
A

Mixin’ Up the ML Module System

ANDREAS ROSSBERG, Google
DEREK DREYER, Max Planck Institute for Software Systems (MPI-SWS)

ML modules provide hierarchical namespace management, as well as fine-grained control over the propa-
gation of type information, but they do not allow modules to be broken up into mutually recursive, separately
compilable components. Mixin modules facilitate recursive linking of separately compiled components, but
they are not hierarchically composable and typically do not support type abstraction. We synthesize the
complementary advantages of these two mechanisms in a novel module system design we call MixML.

A MixML module is like an ML structure in which some of the components are specified but not defined. In
other words, it unifies the ML structure and signature languages into one. MixML seamlessly integrates hi-
erarchical composition, translucent ML-style data abstraction, and mixin-style recursive linking. Moreover,
the design of MixML is clean and minimalist; it emphasizes how all the salient, semantically interesting fea-
tures of the ML module system (and several proposed extensions to it) can be understood simply as stylized
uses of a small set of orthogonal underlying constructs, with mixin composition playing a central role.

We provide a declarative type system for MixML, including two important extensions: higher-order mod-
ules, and modules as first-class values. We also present a sound and complete, three-pass type-checking
algorithm for this system. The operational semantics of MixML is defined by an elaboration translation into
an internal core language called LTG—namely, a polymorphic lambda calculus with single-assignment ref-
erences and recursive type generativity—which employs a linear type and kind system to track definedness
of term and type imports.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and Theory;
D.3.3 [Programming Languages]: Language Constructs and Features—Recursion, Abstract data types,
Modules; F.3.3 [Logics and Meanings of Programs]: Studies of Program Constructs—Type structure

General Terms: Languages, Design, Theory

Additional Key Words and Phrases: Type systems, ML modules, mixin modules, abstract data types, recur-
sive modules, hierarchical composability

ACM Reference Format:
Rossberg, A., and Dreyer, D. 2011. Mixin’ Up the ML Module System ACM Trans. Program. Lang. Syst. V,
N, Article A (January YYYY), 84 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
ML modules and mixin modules are two well-known and influential mechanisms for
modular programming that have largely complementary advantages and disadvan-
tages. In this article, we show how to synthesize some of the defining aspects of these
mechanisms in the design of a novel module system we call MixML.

We begin by reviewing some of the main features and drawbacks of ML modules and
mixin modules.

Author’s addresses: A. Rossberg, Google Germany, Dienerstr. 12, 80331 München, Germany, rossberg@
mpi-sws.org; D. Dreyer, Max Planck Institute for Software Systems (MPI-SWS), Campus E1.5, 66123
Saarbrücken, Germany, dreyer@mpi-sws.org.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0164-0925/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2 A. Rossberg and D. Dreyer

1.1. ML Modules
Proposed originally by MacQueen [1984] and developed further by Harper, Leroy, and
many others [Harper and Lillibridge 1994; Leroy 1994; Russo 1998; Dreyer et al. 2003],
the ML module system offers powerful support for flexible program construction, data
abstraction, and code reuse. In ML, structures provide namespace management, signa-
tures describe module interfaces, functors enable the definition of generic modules, and
opaque signature ascription (a.k.a. sealing) lets one hide the implementation details of
a module behind an interface.

One important feature of ML modules is that they are hierarchically composable.
Structures may contain other structures as components, and thus be used to build hi-
erarchical namespaces. Another important feature is that ML modules may contain
both dynamic components, defined by core-ML terms, and static components, defined
by core-ML types. The packaging together of types and terms, along with the opaque
sealing construct, allows modules to express abstract data types. Furthermore, signa-
tures are translucent [Harper and Lillibridge 1994], i.e., they can specify type compo-
nents of modules either abstractly or transparently. Translucency gives the program-
mer fine-grained control over the propagation of type information.

However, one major limitation of ML modules (at least traditionally) is that they
cannot be defined recursively, thus inhibiting the decomposition of mutually recursive
functions and data types into modular components. Consequently, in the last decade,
there have been several proposals for extending ML with recursive modules [Crary
et al. 1999; Russo 2001; Leroy 2003; Nakata and Garrigue 2006; Dreyer 2007b]. While
the existing proposals address a variety of interesting issues, such as the interaction
of recursion and data abstraction [Crary et al. 1999; Dreyer 2007b], none of them
provides adequate support for something we view as a central design goal: separate
compilation, i.e., the ability to break big modules into smaller components that can
be type-checked and compiled independently of one another and linked with multiple
different implementations of the other components. The desire to do so is half the mo-
tivation for recursive modules, yet, except in restricted cases, this functionality is not
accounted for by any of the existing proposals.

We believe that the reason existing proposals have failed to support general separate
compilation of mutually recursive modules is that ML’s traditional means of support-
ing separate compilation and hierarchical (i.e., non-recursive) linking—namely, func-
tors—do not scale well to the recursive case. The body of a functor (which defines its
exports) may depend on its argument (which specifies its imports), but not vice versa.
In the context of recursive modules, however, the import specifications of a separately-
compiled module may in general need to refer recursively to abstract type components
provided in its exports. Unfortunately, it is not obvious how to generalize the functor
mechanism in a simple way in order to permit the argument to depend on the result.

1.2. Mixin Modules
Although the concept of mixins originated in work on Common LISP from the mid-
1980s [Moon 1986], Bracha and Cook [1990] were the first to propose mixins as an
actual language construct (in their case, as an extension to Modula-3). Since then,
mixins have appeared in a variety of different languages, under a variety of different
names, meaning a variety of different (albeit related) things.

In the context of Bracha and Cook’s pioneering work, as well as most subsequent
object-oriented instances of mixins, a mixin is an abstract subclass (their terminology),
i.e., a subclass that is parameterized over an abstract specification of its superclass and
can be instantiated to extend multiple different superclasses.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:3

The other common meaning of mixins, which is less specific to object-oriented pro-
gramming and is the one we are primarily interested in for the purposes of this arti-
cle, is also due to Bracha, in particular his work with Lindstrom on the Jigsaw lan-
guage [Bracha and Lindstrom 1992]. Jigsaw’s central construct is actually not called
a mixin, but rather a module. Jigsaw modules may contain both defined components
(i.e., exports) and declared components (i.e., imports). The language provides a suite
of operators for adapting and combining modules. Of particular note is the merge op-
erator, which takes as input two modules, M1 and M2, and returns a module M such
that

(1) exports(M) = exports(M1) ] exports(M2)
(2) imports(M) = imports(M1) ∪ imports(M2)− exports(M)

Here, ] denotes that the exports of M1 and M2 must be disjoint. In addition, the typing
rule for the merge operator checks that any components with the same name in M1

and M2 have compatible types (for some suitable definition of “compatible”, e.g., the
types are equal, or one is a subtype of the other).

While the merge operator does not permit M1 and M2 to have overlapping exports,
Bracha provides a separate override operator that does, choosing the export from M2

over the export from M1 in case of an overlap. In some later versions of mixins, a vari-
ant of the override operator, not the merge operator, is adopted as the default notion of
mixin composition. Moreover, support for overriding (and “late binding”) is often con-
sidered a central feature of mixins. Be that as it may, for the remainder of this article
we will use the term mixin composition to mean Bracha’s merge operator. Following
mixin-based languages like Flatt et al.’s units [Flatt and Felleisen 1998; Owens and
Flatt 2006] and Duggan’s recursive DLLs [Duggan 2002], our MixML language does
not attempt to support any form of overriding.

The work on Jigsaw has inspired a significant amount of research into mixin mod-
ule systems. Over the course of several papers, Ancona and Zucca have explored in
depth the semantic properties and algebraic laws of mixin operators, and developed a
foundational mixin module calculus called CMS, which refactors some of the Jigsaw
primitives [Ancona and Zucca 2002; 1998; Ancona et al. 2003]. While CMS is a pure
call-by-name language, it has been extended with support for call-by-value evalua-
tion [Hirschowitz and Leroy 2005] and monadic effects [Ancona et al. 2003].

Compared with ML modules, a key advantage of mixin modules is that the mixin
composition of modules M1 and M2 is by definition a kind of recursive linking, in which
the exports of each module are used to satisfy the imports of the other. Mixin mod-
ules thus appear to offer a natural solution to the problems with separate compila-
tion of recursive modules in ML. One major limitation of Bracha/CMS-style mixin
modules, however, is that they contain only term components, not type components,
which means that they cannot express type genericity or ML-style abstract data types,
let alone translucent signatures. This has led a number of researchers to consider
ways of combining the support for type abstraction found in ML modules with the sup-
port for separate compilation and recursive linking found in mixin modules [Flatt and
Felleisen 1998; Duggan 2002; Odersky and Zenger 2005; Owens and Flatt 2006].

1.3. Motivation
The motivation for this article is that the existing proposals for synthesizing ideas from
ML modules and mixin modules (which we will discuss in detail in Section 10) are all
lacking in one key respect: none of them allows for a simple and direct encoding of all
the salient, semantically interesting features of the ML module system. For example,
Owens and Flatt [2006] give an encoding of ML-like modules into their unit language,
but it depends critically on the impractical assumption that the ML programs being

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 A. Rossberg and D. Dreyer

encoded have (redundant) signature annotations on nearly every subexpression. Oder-
sky et al.’s Scala language [Odersky and Zenger 2005; Cremet et al. 2006], while highly
expressive in its support for OO-style extensibility, has only limited support for opaque
signature ascription—i.e., the ability to seal a module (or class) ex post facto behind an
abstract interface—which is a central feature of the ML module system. Ideally, we
would like a language that seamlessly integrates mixin composition into ML without
sacrificing any key features of ML modules.

1.4. MixML
In this article, we present a novel foundational module system, called MixML, which
incorporates at a deep level the mechanism of mixin module composition, while retain-
ing the full expressive power of ML modules.

The main idea of MixML is simple: the MixML module language unifies ML’s struc-
ture and signature languages into one. That is, a MixML module may contain both
type and term definitions, of the kind found in ML structures, as well as type and term
specifications, of the kind found in ML signatures. It is not required to contain only
definitions or only specifications; rather, it may freely mix them. Thus, traditional ML
structures and ML signatures may be viewed as endpoints on the spectrum of MixML
modules.

Why is MixML’s unification of structures and signatures useful? Because it enables
us to encode a wide variety of features directly as stylized uses of a small set of or-
thogonal underlying constructs, thus simplifying and regularizing the design of the
language. In particular:

(1) MixML provides a unifying account of several pairs of language constructs that
are usually modeled as extensions to both the structure and signature languages
of ML. Concretely, for each of the following pairs of features, MixML supports both
features via a single encoding:
— hierarchical structures and hierarchical signatures
— recursive structures and recursively dependent signatures
— functors and parameterized signatures

(2) A variety of features that are typically supported via distinct mechanisms may be
encoded in MixML as idiomatic uses of mixin composition, i.e., (recursive) linking.
These include:
— recursive module definitions
— structure and signature inheritance (open and include)
— signature refinement (with/where/sharing)
— signature ascription, opaque (:>) and transparent (:)
— functor application
The encodings of these features involve the linking of two MixML modules, one or
both of which represents an ML signature. These encodings are made possible by
the fact that structures and signatures are just different kinds of MixML modules,
and any two modules can be linked together so long as they are compatible (in a
sense we make precise later in the article).

1.5. Technical Contributions
If the basic design idea of MixML is as simple and powerful as we claim, the reader
may wonder why it has not been proposed before. We believe the reason is that the
feasibility of the idea is dependent on several novel enhancements to mixin module
semantics that we set forth in this article, as well as a generalization of some recent
work on handling the “double vision” problem in the context of recursive modules. We
briefly summarize these technical contributions here.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:5

Hierarchical Composability. Suppose M1 and M2 are ML structures, each of signature

sig val x : int; val y : int end

One can compose them hierarchically to form a new structure containing both:

module M = struct module A1 = M1; module A2 = M2 end

If M1 and M2 were mixin modules, each with x as an import and y as an export, we
might wish to hierarchically compose them in the same way, with the result being a
new mixin module M, with imports A1.x and A2.x, and exports A1.y and A2.y. Yet,
in previous CMS-style mixin module systems, hierarchically composing two mixins to
form another mixin is not possible. The reason is that CMS-style systems employ a flat
namespace for their imports and exports—path names like A1.x are disallowed.

Hierarchical composability, which MixML modules support, allows us to use a single
namespace mechanism to build hierarchies of structures, signatures, or modules that
are a mixture of both. More importantly, linking is also hierarchical, i.e., it applies not
just to a flat module, but to all modules nested inside it. Without this more general
mechanism, we would be unable to provide a unified representation of hierarchical
structures and signatures.

Unifying Linking and Binding. In previous systems, the mixin composition of two
modules does not provide a way for either of the modules to refer directly to compo-
nents of the other. In other words, the linking operator is not a variable binder; instead,
binding is typically built into other constructs.

In MixML, we take a different tack by making the linking operator the only binding
construct. This enables us to (1) model all forms of binding in ML modules as styl-
ized uses of linking, and (2) achieve very simple encodings of several features, such
as recursive modules and sharing specifications. The benefit of unifying linking and
binding will be borne out by a number of examples in Section 2.

Cross-Eyed Double Vision. A key problem that arises when extending ML with re-
cursive modules is double vision [Crary et al. 1999; Dreyer 2005], i.e., type aliasing
through the interaction of recursion and type abstraction: when a recursive module X
introduces a type name t, then inside the definition of X, the external type path X.t
becomes an alias for the local type t—double vision arises when the type system fails
to equate these two types. As MixML modules subsume the functionality of recursive
ML modules, double vision is an issue for MixML as well. In fact, since mixin compo-
sition is essentially a bidirectional generalization of ML-style signature matching, the
MixML type system must handle a “cross-eyed” version of the double vision problem.

Fortunately, in recent work, Dreyer [2007b; 2007a] has shown how to solve the dou-
ble vision problem for recursive ML modules, and this solution can be generalized quite
easily to handle the cross-eyed double vision problem for MixML modules. We describe
the problem and its solution by example in Section 3, and provide full formal details of
the solution in Section 4.

1.6. Differences from the Conference Version
This article is an extended version of our ICFP’08 paper of the same title [Dreyer and
Rossberg 2008]. The present work offers a number of improvements on the conference
version, as well as a wealth of additional material. Most notably:

— The language here supports higher-kinded type components.
— We describe how to integrate modules and units as first-class values.
— We give the rules and soundness proof for an elaboration translation, thereby defin-

ing the operational semantics of MixML and establishing type safety.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 A. Rossberg and D. Dreyer

— The type system of the internal language (named LTG) that is targeted by the elab-
oration translation uses linear reference types in order to ensure that all term com-
ponents of a module are defined once and only once. The type system also employs a
novel, analogous notion of linear kinds to guarantee definedness of abstract types.

— We describe a sound and complete algorithm for type-checking MixML.

1.7. Overview
The rest of the article is structured as follows. In Section 2, we present the syntax of
MixML and lead the reader on a tour of the language by example. In Section 3, we
explore several technical issues that the MixML type system must address, including
the double vision problem and the handling of cyclic definitions. In Section 4, we give
the formal definition of the MixML type system, in particular the static semantics. In
Section 5, we extend MixML with support for higher-order modules, and in Section 6
we describe an extension that allows MixML modules to be packaged into first-class
values.

The dynamic semantics of MixML is defined by translation into the internal lan-
guage LTG. In Section 7 we define this internal language and prove it type-safe, and
in Section 8 we give the actual translation of MixML (including the extensions from
Sections 5 and 6), thus establishing type safety for it as well. In Section 9 we present
a decidable algorithm for type-checking MixML and prove it sound and complete. Fi-
nally, in Section 10, we offer a detailed comparision with related work, and conclude
with directions for future work.

This article focuses on the technical problem of synthesizing ML-style modules with
mixin composition. Thus, for brevity, we assume basic familiarity with ML module
programming; for those readers interested in a gentler introduction to ML-style mod-
ule systems, there is a rich literature on the subject [MacQueen 1984; Harper 2011;
Harper and Pierce 2005; Dreyer 2005; Russo 1998; Rossberg et al. 2010].

2. A TOUR OF MIXML
The syntax of MixML is displayed in Figure 1. In a MixML module, some components
may be defined (the exports), and some may have a kind or type specification but
are not defined (the imports). The import components of a module can be viewed as
requirements that will be fulfilled in the future when the module is linked with other
modules. Thus, the MixML type system insists that no module operator be permitted
to remove the imports of a module from scope (e.g., by the use of data abstraction),
as one should not be allowed to forget about a requirement. In contrast, exports may
always be hidden.

Types and Terms. Following Leroy [2000], we define our module language to be
largely agnostic with respect to the details of the core language. Of the term lan-
guage we expect only that it contains a term projection construct val(mod), which takes
an atomic term module mod (i.e., a module containing a single term component) and
projects out the term. Similarly, we assume that the type language contains a type
projection construct typ(mod), which takes an atomic type module mod (i.e., a mod-
ule containing a single type component) and projects out the type. For brevity, we will
typically omit the explicit typ and val projections in examples when their necessity is
clear from context, e.g., we write just M.t as a type expression instead of typ(M.t).

We also assume that the type language contains type constructors, which take a
type argument and return a type as a result. Type constructors can be higher-order,
with kinds classifying them. Types classifying terms have kind type. Type variables
are implicitly annotated with their kind, and we write kndα to denote α’s kind where
necessary.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:7

Type Var’s α, β ∈ TyVars ×Kinds
Module Var’s X,Y ∈ ModVars
Labels ` ∈ Labs
Paths `s ::= ε | `.`s ∈ Paths
Kinds knd ::= type | knd→ knd ∈ Kinds
Types typ ::= typ(mod) | α | λα.typ | typ1 typ2 | . . .
Terms exp ::= val(mod) | . . .
Modules mod ::= X | {} | [:typ] | [exp] | [:knd] | [typ] |

{`=mod} | mod .` | [mod] | new mod |
(X =mod1) with mod2 | (X =mod1) seals mod2

knd→ knd
def
= knd1→ · · · → kndn→ knd

λα.typ
def
= λα1.· · ·λαn.typ

typ typ
def
= typ typ1 · · · typn

mod1 with mod2
def
= (X =mod1) with mod2

mod1 seals mod2
def
= (X =mod1) seals mod2

where X 6∈ fv(mod2)

Fig. 1. Basic MixML Syntax

Atomic Modules. Atomic modules are modules containing a single, anonymous type
or term component, and that component may be either specified (i.e., an import) or
defined (i.e., an export). Whereas, in ML, definitions only occur in modules, and spec-
ifications only occur in signatures, in MixML both definitions and specifications are
module constructs.

The module [:typ] represents a term specification of type typ (a term import). The
module [exp] represents a term component defined to be the value resulting from
the evaluation of exp (a term export). The module [:knd] represents an abstract type
specification of kind knd (a type import). The module [typ] represents a transparent
definition of a type component equal to typ (a type export). Note that, in ML, there is a
distinction between transparent type definitions, which appear in modules, and trans-
parent type specifications, which appear in signatures. In MixML, these mechanisms
are unified into one.

Unary Namespaces and Projection. The construct {} denotes an empty module, con-
taining no components. The module {`=mod} introduces a namespace containing a
single component named `, whose definition is mod . Any imports (resp. exports) of mod
become imports (resp. exports) of {`=mod} as well, except the path names of those
imports (resp. exports) now have “`.” in front of them. Thus, MixML modules are hier-
archically composable.

The constructs we have discussed so far can be combined to give a direct encoding of
ML-style named type and term definitions and specifications:

val v : typ
def
= {v= [:typ]}

val v = exp
def
= {v= [exp]}

type t α
def
= {t= [:kndα→ type]}

type t α = typ
def
= {t= [λα.typ]}

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 A. Rossberg and D. Dreyer

Here, α = α1 . . . αn denotes a (possibly empty) vector of type variables, and kndα
is the vector of their respective kinds. We write kndα→ type to abbreviate the kind
kndα1

→· · ·→ kndαn
→ type.

Dual to {`=mod} is the construct mod .`, which projects the ` component from the
module mod . The typing rule for mod .` insists that any imports mod must be contained
in the ` component. This guarantees that no import requirements of mod are dropped
when we project out the ` component.

At the moment, all we have are unary namespaces. In order to support n-ary struc-
tures and signatures of the sort found in ML, we now present MixML’s most versatile
construct—linking.

Linking. The linking module construct (X =mod1) with mod2 is MixML’s primary
means of composing multiple modules together. Linking does several things:

— It performs mixin composition of mod1 and mod2 in the style of Bracha’s merge op-
erator (assuming they are compatible).

— It sequences effects. Any definitions of term components in mod1 will be evaluated
prior to any such definitions in mod2.

— It is the only means of variable binding in the language. It binds X as a representa-
tive of mod1 inside mod2. (We allow dropping the “X=” if X does not occur in mod2.)

Compatibility of mod1 and mod2 reduces to compatibility of their atomic components.
For each component of the same path name in both modules, compatibility is defined
informally as follows:

— If the component is an import in mod1 and an export in mod2, then mod2’s export
must match the import specification from mod1. (And vice versa, if the component is
an export in mod1 and an import in mod2.)

— If the component is a type import in both modules, they must both specify it to have
the same kind.

— If the component is a type export in both modules, they must both define it to be the
same type.

— If the component is a term import in both modules, and has specification typ1 in
mod1 and typ2 in mod2, then either typ1 must be a subtype of typ2 (for some notion
of core subtyping, e.g., polymorphic instantiation) or vice versa, and whichever type
is stronger is the one propagated as the specification of the component in the linked
module.

— The component must not be a term export in both modules.1

One may wonder why the linking construct is asymmetric. There are two main rea-
sons. First, as we will soon see, the asymmetric form of linking turns out to be sufficient
for encoding recursive modules, with mod1 acting as a kind of “forward declaration” for
mod2. Second, it is not clear how we could generalize this design to a symmetric linking
construct while keeping type-checking decidable. (See further discussion at the end of
the section on “double vision” in Section 3.)

Before exploring the recursive aspects of linking, we first show how it may be used
to express n-ary non-recursive structures and signatures, as well as several other non-
recursive features.

n-ary Structures and Signatures. While, in ML, components of a structure or sig-
nature are for convenience only assigned a single name, most type-theoretic accounts
of the ML module system employ a label-variable distinction [Harper and Lillibridge

1Allowing term exports to be mixed would give rise to OO-style overriding, which we exclude deliberately.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:9

1994] (or the equivalent [Leroy 1994]). This divides the name of each component into
a label `, which is unchangeable and is used as the “external” name of the component,
and a variable X, which is alpha-convertible and is used as the “internal” name of
the component within subsequent definitions/specifications of the structure/signature.
Under this approach, an n-ary structure can be expressed as

{`1 .X1 =mod1, . . . , `n .Xn =modn}

where each Xi is bound in the subsequent mod j ’s to the result of evaluating mod i. In
ML, `i and Xi must be the same identifier. We will also often omit the variable when it
can be the same identifier as the label.

The encoding of an n-ary structure defines it as the linking of n disjoint unary struc-
tures (we assume here that X is suitably fresh):

{`1 .X1 =mod1, . . .}
def
= (X = {`1 =mod1}) with {. . .}[X.`1/X1]

Inside the linking, X stands for the unary structure containing just the `1 compo-
nent. In the encoding of the remainder of the components (. . . ), we must therefore
replace references to X1 with X.`1. We assume here for simplicity that all the `i
are distinct labels. There are well-known ways of allowing for shadowing [Harper
and Stone 2000; Rossberg et al. 2010], essentially by rewriting {`1 .X1 =mod1, . . .}
to let X1 =mod1 in {. . .} if `1 is rebound in “. . .” (see below for a definition of let).

Typically, ML module type systems model n-ary signatures in a similar fashion to
n-ary structures (yet as a distinct construct):

{`1 .X1 : sig1, . . . , `n .Xn : sign}

However, since ML signatures are encoded in MixML as modules (i.e., a sig is just a
module with no term exports), the encoding of n-ary signatures is exactly the same as
for n-ary structures:

{`1 .X1 : sig1, . . .}
def
= (X = {`1 = sig1}) with {. . .}[X.`1/X1]

We just change the colons to equal signs: wherever you see X : sig in ML code, expect to
see X = sig in its MixML encoding. As we will show, this maxim applies to all instances
of structure specification in ML, not just substructure specifications.

Type Signatures. Since n-ary structures and signatures expand to the same con-
struct, definitions and specifications can be mixed freely. One benefit of this is the
possibility to provide separate type signatures for the definitions in a structure (a fea-
ture that is frequently requested for ML). For example:

{val f : int→ int,
val f = λx. if x= 0 then 1 else x ∗ f (x− 1), . . .}

The first binding only declares the type of f, i.e., provides a type signature for it, while
the second gives the actual definition. The first is an import and the second an export,
so they will be linked and appear as one field to the remainder of the program (provided
the type of the definition matches the declared type).

Note that, according to the expansions we have defined above, structures and their
fields are not, by themselves, recursive. Consequently, in the example, the occurrence
of f inside the function definition refers to the binding provided by the previous spec-
ification (which then get merged via recursive linking). Its type hence is determined
by the explicit type signature. Thus, if the core language provides ML-style polymor-
phism, explicit type signatures can be used to directly introduce polymorphic recur-
sion, like in Haskell [Peyton Jones et al. 2003]. (Unlike in Haskell, however, the ex-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 A. Rossberg and D. Dreyer

ternal type of f will be the—potentially more general—type derived for the second
binding, i.e., the type signature does not restrict the final type.)

Due to the general nature of linking, there is no reason that the type signature and
the definition of a value have to be given as consecutive bindings—a type signature
can also act as a forward declaration for a definition occurring much later in the same
structure.

Local Module Definitions. Using the above encoding of n-ary namespaces, we can
easily encode a let construct that enables the definition of local modules. The encoding
makes use of two labels, `1 and `2, which are arbitrary:

let X =mod1 in mod2
def
= {`1 .X =mod1, `2 =mod2}.`2

The two modules mod1 and mod2 are combined through hierarchical composition into a
pair module, from which the second component `2 is then projected out. Since this has
the effect of hiding mod1, the MixML type system will insist that mod1 be complete, i.e.,
that it have no imports. This is a useful property to be able to enforce. Thus, in general,
if we wish to check that a module mod is complete, we can do so by just let-expanding
it:

complete mod
def
= let X =mod in X

Signature Inheritance. In ML, one may define a signature that inherits specifica-
tions from an existing signature sig and adds new specifications to it. This is supported
by the include mechanism:

{include sig ; newspecs}

MixML supports signature inheritance through linking. To add newspecs to sig , we can
write

(X = sig) with {newspecs}
(Note that in our encoding, in order for newspecs to refer to the components specified in
sig , it must project them from X.)

In fact, linking is more flexible than include because include does not permit multi-
ple inheritance from overlapping signatures. For instance, if sig1 and sig2 both contain
specifications of a type component (named t in both signatures), together with several
operations over values of that type, it is prohibited in ML to write

{include sig1; include sig2}

due to the overlapping t specs. In MixML, though, we can write

sig1 with sig2

and mixin composition will permit overlapping specs in sig1 and sig2 so long as they
are compatible (which in this case they are). A similar approach to multiple signature
inheritance is offered by Ramsey et al.’s andalso signature combinator [Ramsey et al.
2005], but in our case the added functionality falls out directly from the semantics of
mixin linking.

ML also provides an include mechanism for structure inheritance.2 If that include
were a non-shadowing operation like signature include, the encoding of include would
double as an encoding of include for structures (replacing the sig ’s above with mod ’s).
However, unlike signature inclusion, structure inclusion is permitted to (1) shadow

2In Standard ML, it is called open.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:11

earlier bindings, and (2) be shadowed by later bindings. As mentioned earlier, the for-
mer is easy to handle using known techniques [Harper and Stone 2000; Rossberg et al.
2010]. The latter, however, cannot be expressed concisely in MixML, where we can only
rewrite {include mod; newdecs} to let X =mod in {`1 = X.`1, . . . , `n = X.`n,newdecs},
enumerating all labels `i from mod that are not shadowed by newdecs.

Signature Refinement. Mixin linking can also be used to define a very simple en-
coding of ML’s with type (or where type) mechanism for adding type definitions to
signatures. The ML construct

sig with type t α = typ

can be modeled (quite directly!) as a form of linking:

sig with (type t α = typ)

where “type t α = typ” is encoded as defined earlier. Mixin linking will use the defi-
nition for t on the right side of the with (i.e., λα.typ) to fill in the abstract specification
for t in sig . It is also easy to encode the more general form of with type in which t can
be a path `1. · · · .`n, using the following inductive definition:

type `1.`s α = typ
def
= {`1 = (type `s α = typ)}

In fact, though, the above encoding is not entirely faithful to the original ML se-
mantics of with type: if the type component t does not appear in sig at all, then the
encoding will not report a type error (as ML semantics would dictate it should), but
rather simply add “type t α = typ” to sig . If we want to match ML semantics more
precisely, we need to first check that sig contains a specification for the type t.

Enforcing Signature Matching. Such a check can be achieved by replacing sig in
the above encoding with sig matches (type t α), where the matches mechanism is
defined as follows:

sig1 matches sig2
def
= {`1 .X = sig1, `2 = X with sig2}.`1

This expression enforces that sig1 matches the signature sig2. More precisely, the pro-
jection of `1 here means that: (1) if the encoding is well-typed, then sig1 matches sig2 is
indistinguishable from sig1, and (2) the encoding will only be well-typed if the hidden
module labeled `2 is complete (i.e., has no imports). This second condition implies that
the imports of sig2 (its value and abstract type specs) must all be provided by X (as
either imports or exports)—i.e., X’s signature sig1 must actually match sig2.

Type Sharing Constraints. If sig contains two abstract type components u and t, and
we wish to refine the signature so that t is transparently equal to u, the traditional ML
with type construct does not permit us to do so because u is not a valid type outside
the signature. Standard ML retains a second signature refinement operator, sharing
type, precisely to make up for this deficiency.

In MixML, we can encode sharing type very easily by exploiting the ability to bind
sig to a variable while we refine it. That is, in order to refine sig so that t equals u, we
can write

(X = sig) with type t = X.u

We use X here to provide t’s definition with a way of referring to the u component from
sig . This is similar to a proposal of Ramsey et al. [2005], but in our case the added
functionality again falls out directly from our unification of linking and binding.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 A. Rossberg and D. Dreyer

Recursive Structures. Another feature for which the unification of linking and bind-
ing facilitates a very simple encoding is the recursive structure definition. Recursive
structure extensions to ML typically have the form:

rec (X : sig)mod

Here, X is the variable by which mod refers to itself recursively, and sig is the forward
declaration, a kind of template for mod , which serves as the signature of X during the
type-checking of mod .

The encoding of this construct in MixML is extremely simple:

(X = sig) with mod

Mixin linking is in fact a generalization of traditional recursive structure definitions!
It will use the type definitions (type exports) of mod to fill in the corresponding abstract
type specifications (type imports) of sig , and then check that the term definitions (term
exports) of mod match the types from the corresponding term specifications (term im-
ports) of sig . The binding of X inside mod gives mod a way of referring to its own
components (at least those specified in sig) recursively. Note also that this is another
instance of our rule: Just change the colons to equal signs—X : sig becomes X = sig .

One thing this encoding will not do in its present form is ensure that all the compo-
nents forward-declared in sig actually get defined by mod . Any components that mod
fails to define will just remain imports in the result of the linking. To ensure complete-
ness, though, we could use the complete combinator, as explained above.

Recursively Dependent Signatures. All the existing recursive module proposals for
ML also extend the signature language with a new construct called a recursively de-
pendent signature [Crary et al. 1999]. In Russo’s extension to Moscow ML [Russo 2001],
it takes the form:

rec (X : sig1) sig2

This construct allows the signatures of mutually recursive modules (in sig2) to refer
recursively to each other’s type components through the variable X. Of course, since
structures and signatures are both encoded in MixML as modules, this construct is
encoded in the exact same way as the recursive structure construct:

(X = sig1) with sig2

One point of note is that not all recursive module extensions to ML require the pro-
grammer to write down sig1. Instead, they infer it from sig2. We view such an inference
step as a separable convenience. In any case, this encoding demonstrates that recur-
sive structures and recursively dependent signatures can be understood as one and
the same feature.

Opaque Signature Ascription as Opaque Linking. None of the MixML constructs de-
scribed thus far supports the creation of abstract data types. For this purpose MixML
includes a second variant of the linking construct—(X =mod1) seals mod2—which we
call opaque linking (as opposed to the original form, which we view as transparent
linking).

Opaque linking is very similar to transparent linking, except:

— The only information that the rest of the program may know about the result of
opaque linking is what it can tell from looking at mod1—no information about mod2

may be revealed.

This informal property implies several things. First, mod2 must define all of mod1’s
imports. If it only defined some of them, we would have no way of knowing which ones

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:13

it defined without looking at it (and thus violating data abstraction). Second, the type
imports of mod1 will become type exports of the linked module; furthermore, these will
be abstract type exports, meaning that the type-checker will ensure that their identity
is not revealed outside of the linked module. Third, the exports of the linked module
are limited to those components either specified (imports) or defined (exports) in mod1.
Thus, since all of mod1’s imports are fulfilled by mod2, the result of opaque linking is
always a complete module.

Using opaque linking, we arrive at a simple encoding of ML’s sealing (or opaque
signature ascription) construct. Specifically:

mod :> sig
def
= sig seals mod

Functors as Units. So far we have not introduced any means of suspending a module
in the manner of an ML functor. To support this important feature, we introduce a
new atomic module construct we call a unit. (As we explain in Section 10, our units are
inspired by Flatt et al.’s units [Flatt and Felleisen 1998; Owens and Flatt 2006], but
are different in many respects.)

A unit, written [mod], is a suspension of the module mod . With units we can encode
an ML functor (modeled here by a module-level λ-expression) as follows:

λ(X:sig).mod
def
= [{Arg .X = sig , Res=mod}]

In other words, a functor is just a suspension of a module with one component Arg
whose term (and possibly type) components are undefined, and one component Res
that is fully defined. It is probably no coincidence that this approach is very similar to
Abadi and Cardelli’s encoding of functions in their object calculus [Abadi and Cardelli
1996]. (Note how even here the argument binding X : sig is encoded as X = sig .)

Unlike ML functors, though, units need not be so rigidly structured. Any module can
be suspended into a unit, and this added generality is useful, as we will see shortly.

The elimination construct for units is written new mod . Here, mod is assumed to be
a unit, and new mod has the effect of instantiating that unit by producing a fresh copy
of its constituent module, which can then be linked with other modules that satisfy
its imports. For example, suppose that the variable F has been bound to the functor
expression shown above. Application of F to an argument mod is encoded as follows:

F(mod)
def
= ({Arg=mod} with new F).Res

The reason we put new F on the r.h.s. of the linking is to ensure that the term definitions
in mod are evaluated before the term definitions in the body of F, which may depend
on them.

Every instantiation of a unit F generates a distinct instance of the module expres-
sion contained within F. In particular, each occurrence of new F will re-evaluate the
term definitions in F’s constituent module and generate fresh abstract types corre-
sponding to said module’s abstract type exports. In this respect, unit instantiation is
much like generative functor application in Standard ML. We do not currently model
the applicative behavior of functors in OCaml [Leroy 1995], which we leave to future
work.

Transparent Signature Ascription. In addition to opaque signature ascription, Stan-
dard ML includes a mechanism for transparent signature ascription, written mod : sig ,
which narrows the exports of mod to those specified in sig but does not perform any
type abstraction. It is well-known that transparent ascription with signature sig can
be encoded as an application of the identity functor at sig (cf. Rossberg et al. [2010]):

mod : sig
def
= (λ(X:sig).X)(mod)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 A. Rossberg and D. Dreyer

TREE = λ(forest : [:type]).

t = [:type]
leaf = [:int→ t]
fork = [:forest→ t]
push = [:t→ t→ t]
has = [:int→ t→ bool]




FOREST = λ(tree : [:type]).

t = [:type]
empty = [:t]
add = [:tree→ t→ t]
has = [:int→ t→ bool]




TREE FOREST =

rec (X : {Forest= {t= [:type]}}){
Tree = new TREE(X.Forest.t)
Forest = new FOREST(Tree.t)

}
TreeForest = rec (X : new TREE FOREST)

Tree = new TREE(X.Forest.t) seals

t = [Leaf of int | Fork of X.Forest.t]
leaf = [Leaf]
fork = [Fork]

push =


λ(x:t). λ(y:t). case y of

| Leaf i ⇒ Fork (X.Forest.add x
(X.Forest.add y

X.Forest.empty))
| Fork f ⇒ Fork (X.Forest.add x f)


has =

[
λ(i:int). λ(x:t). case x of
| Leaf j ⇒ i = j
| Fork f ⇒ X.Forest.has i f

]


Forest = new FOREST(X.Tree.t) seals

t = [list X.Tree.t]
empty = [List.nil]
add = [List.cons]
has = [λi. λf. exists (X.Tree.has i) f]




Fig. 2. Example: Mutually Recursive Modules

Parameterized Signatures. Jones [1996] proposed the idea of parameterized signa-
tures, i.e., signatures parameterized over module arguments. Although it has been
argued that ordinary ML signatures subsume the expressiveness of parameterized
signatures, we merely wish to point out here that parameterized signatures are di-
rectly encodable in MixML via the exact same encoding as for functors—functors and
parameterized signatures are one and the same thing.

Signature Bindings. In addition to modeling parameterized structures and signa-
tures, units can be used to model ML’s signature bindings. Suppose sig is an ML sig-
nature encoded as a MixML module, and that we wish to bind it to a signature variable
S (to use as shorthand for sig in subsequent code). It would be incorrect to bind S to

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:15

MkTree =

[
(X= new TREE FOREST) with

{Tree = . . . (* as before *) . . .}

]

MkForest =

[
(X= new TREE FOREST) with

{Forest = . . . (* as before *) . . .}

]
TreeForest = new MkTree with new MkForest

Fig. 3. Example: Separate Compilation of Mutually Recursive Modules

sig directly: S = sig is the MixML encoding of the ML structure specification S : sig , so if
S were defined that way, references to it would be references to a particular structure
of signature sig (and to particular, yet undefined, instances of the abstract types speci-
ficed in sig). More concretely, assume we want to bind the signature {t= [:type], . . .}
as S and use it for transparent ascription. However, if we simply wrote{

S = {t= [:type], . . .},
A= {t= [bool], . . .} :S,
B= {t= [int], . . .} : S

}
then S would just be a name for one given structure with a yet undefined type compo-
nent t. The mod : S operator links this structure against mod . In the above example,
we hence try to link S against two different structures, with two different implemen-
tations of type t, therefore defining S.t twice with incompatible types. Clearly, that
cannot type-check.

In ML, a signature binding implicitly quantifies over all abstract types declared in
the signature. Inversely, when the signature name is used, the quantifiers are instanti-
ated with “fresh” types. In MixML, we can simulate this with units. Hence, in order to
define S to be the signature sig (instead of just a structure shaped like sig), we bind S to
the unit [sig] and replace all subsequent uses of S with new S. This works because each
reference to new S will produce a fresh copy of sig , whose imports (including abstract
types) may then be instantiated via linking independently:{

S = [{t= [:type], . . .}],
A= {t= [bool], . . .} : new S,
B= {t= [int], . . .} : new S

}
Since ML signatures do not contain term definitions, performing new on a signature
variable will never have any computational effects.

Separate Compilation of Recursive Modules. At the start of the article, the main
criticism we gave of ML modules was that they do not support separate compilation of
mutually recursive modules. In MixML, this functionality is provided by units.

Suppose we wish to define two modules named A and B, with signatures sigA and
sigB, and definitions modA and modB, which refer recursively to themselves and to
each other through the module variable X. Let the signature variable S be bound to
the unit

[(X = . . .) with {A= sigA, B= sigB}]
where . . . is a signature specifying the type components of A and B that sigA and sigB
need to refer to recursively. Were we to write A’s and B’s definitions together, the MixML
code would be:

(X = new S) with {A=modA, B=modB}

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 A. Rossberg and D. Dreyer

But there is no need to define A and B together. We can, separately, bind UA to

[(X = new S) with {A=modA}]
and UB to

[(X = new S) with {B=modB}]
The units UA and UB represent the separately compiled versions of A and B, respectively.
UA exports definitions for the components of A, but leaves B’s components as imports,
and UB is vice versa. Finally, when we want to link them we simply write:

new UA with new UB

Of course, there is nothing requiring us to link UA and UB in this order or with each
other. They are completely independent program units that can link with any other
compatible units.

Figure 3 shows a more concrete example of two mutually recursive modules defining
abstract data types for (unordered) trees and forests (cf. Nakata and Garrigue [2006]
for a related example, but without the use of type abstraction). It first defines the
signatures TREE and FOREST for those two modules. In order to factor out the recursion
between them, we have chosen here to define them as parameterized signatures. (How-
ever, we could as well have made their parameters into components of the signatures,
which is the technique often used in ML.)

We then define a third, recursive signature TREE FOREST that describes a single struc-
ture containing the Tree and Forest modules, tying the knot between the two individ-
ual signatures. It is needed as a forward declaration for the actual definition of those
modules in the structure TreeForest. Each module is sealed, independent of the other
one, with its respective signature. Consequently, the implementation of neither ab-
stract data type can see internal details of the other.

Figure 3 then demonstrates how TreeForest can be split into two separate units.
Each is defined in recursion with the combined signature TREE FOREST, but defines
only half of it. Subsequently, the two units can be instantiated and linked together.

The recursive nature of units is instrumental to making this decomposition work.
Suppose we were to try expressing, say, MkTree as a plain functor:

λ(X : new TREE FOREST).{Tree= . . . (* as before *) . . .}
Then the type X.Tree.t would be fully abstract inside the functor body, and type-
checking the push function would fail at the call to X.Forest.add, which is in scope
with abstract type X.Tree.t → X.Forest.t → X.Forest.t, but which is passed y with
concrete internal type t = Leaf of int | Fork of X.Forest.t. There is no way to re-
cover the necessary type equivalence, because functors simply do not have the ability
to express that, in fact, X.Tree.t is supposed to be the same type as the type Tree.t
returned by the functor. Compare this to the unit definition we use:

[(X= new TREE FOREST) with {Tree= . . . (* as before *) . . .}]
Here, it is readily apparent to the type system that X.Tree.t and Tree.t end up being
the same type (for more details, see the discussion of double vision in the next section).

Higher-Order Units. With the constructs presented so far, units can only be defined
and exported from other units. If we wish to support the expressiveness of higher-order
functors (functors that take functors as arguments—a feature in many dialects of ML),
then we must also allow unit imports. In order to encode unit imports, it is necessary
to extend MixML with a notion of unit signature, analogous to a functor signature in
higher-order module extensions to ML.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:17

Units as First-Class Values. Like in most existing dialects of ML, we have so far
assumed that the module language is separate from the core language: the constructs
described provide no means for passing modules to, or returning them from, core-level
functions, or for storing them in data structures. However, it is sometimes useful to
pick or compute modules at run-time. This functionality can be provided by extending
the language with the ability to package up units as first-class values.

As the latter two extensions are completely orthogonal to the other features of
MixML, and since we feel the rest of the MixML type system is perhaps easier to
understand in the absence of these extensions, we will continue in the next two sec-
tions by presenting the basic MixML type system, and then present higher-order units
and units as first-class values as optional extensions in Sections 5 and 6.

3. CHALLENGES IN TYPING MIXML
The combination of recursive mixin composition with abstract type components and
sealing raises a number of technical challenges. In this section we informally dis-
cuss the central problems that arise in typing MixML. The solutions we employ are
mostly generalizations of the techniques developed by Dreyer for typing recursive mod-
ules [Dreyer 2007b].

Bidirectional Type Lookup. In ML, matching a structure mod against a signature
sig is a two-step procedure. First, for each type component specified abstractly in sig ,
we look up its definition in mod , and refine its specification in sig appropriately (i.e.,
make its specification transparently equal to its definition in mod ). We then check that
the specification of each (type or value) component in the refined sig is matched by its
corresponding definition in mod .

To see why this two-step process is necessary, consider:
struct type t = int; val x = 3 end

:>
sig type t; val x : t end

Checking whether 3 has type t will fail unless we first refine the specification of t to
its underlying definition, type t = int.

In MixML, we no longer explicitly distinguish structures from signatures. Linking
effectively generalizes unidirectional matching to bidirectional merging of two mod-
ules, which may both contain abstract type components. Consequently, type lookup
and refinement must be performed in both directions simultaneously. For example,
consider: {

t = [int],
u = [:type],
f = [:int→ u]

}
with

{
t = [:type],
u = [bool],
f = [λx:t.true]

}
The definition for f in the second module will only match its specification in the first
module if we first refine u to bool and t to int in both modules. This involves bidirec-
tional type lookup, which, as we will see, is a straightforward generalization of ML’s
unidirectional type lookup.

Cyclic Type Definitions. Type lookup in MixML can easily introduce cyclic type defi-
nitions. For example,

(X= {t= [:type]}) with {t= [X.t→ int]}
or {

t = [:type],
u = [t]

}
with

{
u = [:type],
t = [u]

}

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 A. Rossberg and D. Dreyer

Supporting such definitions would require the introduction of higher-kinded equi-
recursive types [Crary et al. 1999] into the type system, for which there is no known
effective type-checking algorithm in the general case. Hence, during type lookup, we
check that the definitions of the abstract type components being looked up do not have
cyclic dependencies. In particular, we would reject both of the above examples.

The prohibition on type cycles during lookup prevents one from defining transpar-
ently recursive types. However, as we explain at the end of this section, we do al-
low the definition of opaquely recursive types, which generalize ML-style iso-recursive
datatypes.

Cyclic Term Definitions. Linking can also introduce cycles between the definitions
of term components. We adopt a sequential call-by-value semantics for the evaluation
of term components in MixML, where recursion is implemented by letrec-style back-
patching (Section 8). This is similar to the approach taken by several other recursive
module systems [Flatt and Felleisen 1998; Russo 2001; Leroy 2003; Nakata and Gar-
rigue 2006; Dreyer 2007b].

Under the backpatching semantics, cyclic linking can cause a run time exception if
a term component is accessed before its definition has been evaluated. Static detection
of such errors is a problem that is orthogonal to our work and has been addressed by
Hirschowitz and Leroy [2005] and Dreyer [2004] among others. (In general, if separate
compilation is still desired, static checking for illegal cycles is only possible if the pro-
grammer provides sufficient dependency annotations on imports. We have chosen not
to open that particular can of worms for MixML.)

Double Vision. An important problem that arises in extending ML with recursive
modules is the double vision problem [Dreyer 2005]. Consider the following simple
example:

(X= {t= [:type], . . .}) seals {t= [int], . . .}
Here, we are defining a recursive sealed module with a type component t that is de-
fined internally to be int. Within the r.h.s. of the seals, we know that t is implemented
as int, so we ought to know that X.t (which is just a recursive alias for t) equals int
as well, but the signature bound to X does not reflect this. As a result, the programmer
may be forced to expose the definition of t as int in the l.h.s. module, thus losing type
abstraction.

For this particular example, the problem can be worked around by making t trans-
parently equal to int in the l.h.s. module, and then applying sealing “after the fact.”
However, it is not always possible to seal after the fact. For instance, if a recursive
module contains sealed substructures that wish to hide type information from one an-
other, then there is no way to hoist out the sealing without exposing the substructures’
implementations to each other.

Fortunately, Dreyer has developed a general solution to the double vision problem
in his RMC type system [Dreyer 2007b], and we can readily adopt his solution. The
central ideas of RMC are as follows.

First is the idea of forward-declaring abstract types. In RMC, the typing judgment
for a module mod assumes that the names of mod ’s abstract types have already been
forward-declared (i.e., created ahead of time, potentially in an earlier scope), and that
they will be passed in as input to the typing judgment. For example, in typing the
sealed recursive module above, RMC would assume that in the context there already
exists a type variable, say α, which was forward-declared to represent the abstract
type component t.

Secondly, when type-checking a recursive or sealed module, RMC employs a two-
pass algorithm. The first pass is a “static” pass, which computes the type components

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:19

of the module (e.g., discovering that t in our example is defined internally as int). The
information from the static pass is then incorporated into the typing context during
the second “main” pass, which fully type-checks the module. In our example, this would
mean that the body of the sealed module will be fully type-checked in a context where
(1) X.t is transparently equal to int, and (2) any occurrence of α (the forward-declared
representative of t) in the typing context is replaced by int. This approach successfully
avoids double vision by ensuring that all forward references to the abstract type t in
the typing context are “up-to-date” with the most precise information available about
t in the current scope.

We adopt the same cure for double vision in MixML, forward-declaring abstract
types and performing two passes on the r.h.s. of every linking operation. (Note that, if
we had used a symmetric linking construct, this cure would not work. If both sides
of the linking construct could refer to each other, then the static passes for both
sides would become mutually dependent.) Unfortunately, since linking involves bidi-
rectional merging instead of unidirectional matching, the RMC solution per se is not
quite enough.

Cross-Eyed Double Vision. Consider the following example:(
X=

{
t . t1 = [:type],
u . u1 = [int],
f = [λx : t1. x]

})
with

{
t . t2 = [bool],
u . u2 = [:type],
g = [λy : u2. X.f(y > 1)]

}

Inside the definition of g, both t and u are accessible under two distinct paths (t2 vs.
X.t and u2 vs. X.u, respectively). Thus, to type-check the definition, two instances of
double vision have to be handled: checking y > 1 requires knowing that u2 = X.u (and
thus u2 = int), and checking the application of X.f to the resulting boolean requires
knowing that X.t = t2 (and thus X.t = bool).

In short, this example suffers from cross-eyed double vision. The RMC solution takes
care of one direction (X.t = bool) but not the other. In order to inform the type-checker
that u2 = int, we generalize the RMC approach as follows. In addition to taking as
input a list of type variables corresponding to the abstract export types of a module,
the MixML module typing judgment takes as input an import realizer, which maps
the type imports of the module to the concrete types that will instantiate them. In the
above example, when performing the main pass on the r.h.s. module, the type-checker
will pass in a realizer mapping u to int, and this information will get propagated to
the r.h.s. definition of u. In order to compute this realizer, we perform bidirectional type
lookup in between the static and main passes of type-checking.

Information about import types is only propagated rightward. For instance, in the
above example, the l.h.s. module does not get to know that t1 = bool. This does not
incur double vision because the l.h.s. module does not have a name by which to refer
to the r.h.s. module. If a module’s type imports are not instantiated by (the l.h.s. of)
any enclosing linking operation, the type-checker will pass in a realizer that maps
them to abstract type variables. For the details of how those import type variables are
managed, see Section 4.

While double vision is a problem with no easy workarounds, the seriousness of cross-
eyed double vision is somewhat debatable. For instance, in our example, we could eas-
ily avoid double vision for the u component by making its definition in the r.h.s. module
manifestly equal to X.u. However, such a workaround is quite brittle. It only works if u
is an export in the l.h.s. module; otherwise, the definition of u2 as X.u is indistinguish-
able from a transparent type cycle. It is simpler for the programmer to be able to rely
on the type system to avoid double vision in both directions.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 A. Rossberg and D. Dreyer

Opaquely Recursive Types. We conclude this section by briefly explaining how to en-
code ML-style iso-recursive (or “opaquely recursive”) datatype’s. The encoding is in-
teresting because it demonstrates an instance where we want to incur double vision!
Luckily, the MixML type system provides a very simple way of manually overriding
the built-in solution to double vision.

First, consider the following encodings of specifications and definitions for non-
recursive datatype’s, respectively:

{:`≈ typ} def
= {` .X = [:type], ` in= [:typ → X], ` out= [:X→ typ]}

{`≈ typ} def
= {:`≈ typ} seals {` .X = [typ], ` in= [λx:X.x], ` out= [λx:X.x]}

Similar to the interpretations given by Harper and Stone [2000] and Dreyer [2007b],
these encodings model the datatype definition {`≈ typ} as an ADT providing an ab-
stract type `, together with ` in (fold) and ` out (unfold) functions to coerce between
` and its underlying representation typ. For brevity, we have only shown the encod-
ing of monomorphic datatype’s (of kind type) here; it can be easily generalized to the
polymorphic, higher-kinded case.

Given these definitions, it would seem straightforward to encode a recursive
datatype by enclosing a non-recursive datatype in a recursive module. For example,
integer lists:

rec (X : {intlist= [:type]}) {intlist≈ unit + int× X.intlist}

Unfortunately, this encoding does not type-check. The reason is that, when the type-
checker descends into the body of the sealed datatype module, it will (1) discover that
intlist is defined to be τ = unit + int × X.intlist, (2) try to update the typing
context so that X.intlist is transparently equal to τ , and (3) report the presence of a
transparent type cycle.

What we want, then, is to be able to switch off the type-checker’s double vision avoid-
ance mechanism. We can achieve this by inserting a computationally irrelevant unit
suspension/instantiation β-redex (underlined here):

rec (X : {intlist= [:type]}) new[{intlist≈ unit + int× X.intlist}]

Inserting “new[·]” has the effect of dislocating the datatype module from its surround-
ing scope. Units in MixML were designed for encapsulation and separate compilation,
and thus the MixML type-checker does not make any attempt to connect the abstract
types defined inside a unit (in this case, intlist) with any forward-declared types in
the typing context (X.intlist). One could make the case for an alternative design in
which the type-checker does attempt to connect the types, but the benefit of being able
to switch off double vision avoidance is evident from the above encoding.

4. THE MIXML TYPE SYSTEM
4.1. Semantic Objects
The MixML type system is based to a large extent on Dreyer’s RMC type system for
recursive modules [Dreyer 2007b]. RMC in turn inherits many aspects from the Def-
inition of Standard ML [Milner et al. 1997]. In particular, it represents the types of
modules by semantic objects. As in RMC, our semantic objects—shown in Figure 4—
are actually types from a simpler “internal” type system (which will be defined in Sec-
tion 7), enriched with annotations that guide type-checking.

Semantic signatures (Σ) include structure signatures ({|` : Σ|}), as well as atomic sig-
natures for type modules ([[= A]]), term modules ([[A]]±, where ± stands for either + or
−), and units ([[Φ]]+). Our semantic objects differ from RMC’s in that atomic term and

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:21

Type Constructors A ::= α | λα.A | A1 A2 | A1 → A2 | . . .
Module Signatures Σ ::= [[= A]] | [[A]]± | [[Φ]]+ | {|` : Σ|}
Unit Signatures Φ ::= ∀α.∃β. (L; Σ)
Type Substitutions δ ::= {α 7→A}
Type Locators L ::= [[=α]] | {|` :L|}
Import Realizers R ::= [[= A]] | {|` :R|}
Module Contexts Γ ::= ε | Γ,X : |Σ|

Σ.`s
def
=

{
Σ if `s = ε
Σ′ if `s = `s′.` and Σ.`s′ = {|` : Σ′, . . . |}

Σ(`s)
def
= A if Σ.`s = [[= A]]

dom(Σ)
def
= {`s | Σ(`s) = A}

rng(L)
def
= {α | L(`s) = α}

L−1(α)
def
= `s if L(`s) = α and 6 ∃ `s′ such that L(`s′) = α

R ⊆ Σ
def⇔ ∀ `s ∈ dom(R). R(`s) = Σ(`s)

R # Σ
def⇔ dom(R) ∩ dom(Σ) = ∅

R1 ]R2
def
= R such that dom(R) = dom(R1) ] dom(R2)

and ∀`s ∈ dom(R). R(`s) = R1(`s) ∨R(`s) = R2(`s)

|[[= A]]| def
= [[= A]]

|[[A]]±| def
= [[A]]+

|[[Φ]]+| def
= [[Φ]]+

|{|` : Σ|}| def
= {|` : |Σ||}

Fig. 4. Semantic Objects and Auxiliary Definitions

unit signatures are annotated with variances, in order to denote whether they are im-
ports (−) or exports (+).3 The import/export distinction for type components is handled
differently, as we explain below. Signatures in a module context Γ never have imports
(a restriction that is enforced by the notation |Σ|, which turns all imports into exports).

A unit signature (Φ) is a module signature that has been universally quantified over
the module’s import types and existentially quantified over its abstract export types.
(We write α or β for an ordered sequence of type variables, but where appropriate, we
also use the notation as shorthand for the sets {α} or {β}.) Unit signatures also contain
a type locator L that maps the import names α to label paths in Σ. Type locators are
used to implement type lookup.

Locators are a syntactic subcategory of import realizers R, described in Section 3,
which are in turn a subcategory of module signatures Σ. This conveniently allows the
sharing of meta-notation for all three kinds of objects, as shown in Figure 4. In partic-
ular, all three may be viewed as functions mapping the path names of type components
to the type components themselves. Well-formed locators have the additional property
that all their type components are distinct type variables, and thus they can be viewed
as bijective functions between those type variables and their corresponding paths. As
a matter of simplicity, we implicitly identify all realizers that represent the same map-

3Here we present only the fragment of MixML without unit imports [[Φ]]−. Higher-order units are discussed
in Section 5.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 A. Rossberg and D. Dreyer

ping from paths to types, in effect ignoring syntactic differences with respect to empty
substructures.

As a concrete example, consider the following unit:
A = {t= [:type]},

R =

{
u= [:type],
f= [:A.t→ u]

}
seals

{
u= [int],
f= [λx:(A.t).7]

}


The following semantic signature describes this unit:
∀α.∃β. (L; {|A : {|t : [[=α]]|}, R : {|u : [[=β]], f : [[α→ β]]+|}|})

where L is the locator {|A : {|t : [[=α]]|}|}, mapping α to A.t. It imports the type A.t, rep-
resented by α, and exports the type R.u, represented by β. The exported function R.f
is the only term component.

Assumptions about the core language. Semantic core-level types include standard
type functions and application, plus an unspecified set of additional base types. We
assume that there is a (decidable) judgment Γ ` typ ; A that elaborates syntactic core
language types into semantic core-level types. Likewise, there has to be a judgment
Γ ` exp : A that type-checks a core language expression exp and assigns a semantic
type. Finally, we need a subtyping judgment ` A1 ≤ A2 of which we require that it
defines a partial order on semantic core-level types, and is stable under substitution.
We list additional assumptions regarding translation and algorithmic type-checking
at the beginning of Sections 8 and 9, respectively.

Further assumptions. For convenience, we assume that the set of type variables is
partitioned into different kinds. This allows us to drop kind annotations from types
and type variables, since they can always be derived syntactically. We write ` A ⇑ knd
to assert that a constructor A is well-formed with kind knd . For type substitutions δ
we demand implicitly that they be kind-preserving.

We also assume and maintain the invariant that types are kept in β-normal η-long
form (this is relevant where we assume that types are syntactically equal, or when
we take the set of free type variables of a type). We assume that substitutions are
implicitly normalizing, i.e., δA denotes the normal form of the application of δ to A.
And we employ the convention that a type variable is synonymous with its η-long
form, which allows us to treat locators as normalized signatures.

Finally, we assume the existence of a strict total ordering <Paths on label paths as a
technical device for ensuring unique types.

4.2. Typing Rules
Figures 5 and 6 show the typing rules for MixML.

The main typing judgment for MixML modules has the form Γ;R;β ` mod : Σ. Here,
β is a list of type variables representing mod ’s abstract type exports, while the realizer
R captures mod ’s type imports. We implicitly require the variables in β to be distinct.
Note that, due to forward declarations of mod ’s abstract types arising from linking, the
variables β may also appear free in Γ.

As explained in Section 3, the use of realizers generalizes RMC’s typing judgment.
Another minor difference from RMC is that we choose to write β to the left of the
turnstile instead of writing “with β ↓” at the right end of the judgment. Just as in RMC,
the MixML type system tracks type definitions linearly, ensuring that each β in β gets
defined by mod exactly once. Thus, although β in the present judgment is treated like
a linear list of capabilities (as opposed to the formulation in RMC, in which “with β↓”
was treated as a type effect), the underlying semantics is morally the same, and we
consider the difference to be cosmetic.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:23

Modules: Γ;R;β ` mod : Σ

X : |Σ| ∈ Γ

Γ; {||}; ∅ ` X : |Σ|
(VAR)

Γ; {||}; ∅ ` {} : {||}
(EMP)

` A ⇑ knd

Γ; [[= A]]; ∅ ` [:knd] : [[= A]]
(ITYP)

Γ ` typ ; A

Γ; {||}; ∅ ` [typ] : [[= A]]
(ETYP)

Γ ` typ ; A ` A ⇑ type
Γ; {||}; ∅ ` [:typ] : [[A]]−

(IVAL)
Γ ` exp : A ` A ⇑ type

Γ; {||}; ∅ ` [exp] : [[A]]+
(EVAL)

Γ;R;β ` mod : Σ

Γ; {|` :R|};β ` {`=mod} : {|` : Σ|}
(STR)

Γ; {|` :R|};β ` mod : {|` : Σ, `′ : |Σ′||}
Γ;R;β ` mod .` : Σ

(DOT)

` L1 locates α1 R1 # Σ2 Γ;R]R1 ] L1;β1 ` mod1 : Σ1

` L2 locates α2 R2 # Σ1 Γ,X : |Σ1|;R]R2 ] L2;β2 s̀tat mod2 : Σ′2
` (L1; Σ1)� (L2; Σ′2) ; δ Γ,X : |δΣ1|;R]R2 ] δL2;β2 ` mod2 : Σ2

α1, α2 fresh ` δΣ1 + Σ2 ⇒ Σ

Γ;R]R1 ]R2;β1, β2 ` (X =mod1) with mod2 : Σ
(LINK)

` L1 locates α1 Γ;L1;β1 ` mod1 : Σ1

` L2 locates α2 Γ,X : |Σ1|;L2;β2 s̀tat mod2 : Σ′2
` (L1; Σ1)� (L2; Σ′2) ; δ δΓ,X : |δΣ1|; δL2;β2 ` mod2 : Σ2

β2, α2 fresh ` δΣ1 + Σ2 ⇒ |Σ|
Γ; {||};β1, α1 ` (X =mod1) seals mod2 : |Σ1|

(SEAL)

Γ ` mod : Φ
Γ; {||}; ∅ ` [mod] : [[Φ]]+

(EUN)

Γ ` mod : [[∀α.∃β. (L; Σ)]]+ dom(δ) = {α, β}
Γ; δL; δβ ` new mod : δΣ

(NEW)

Complete Modules: Γ ` mod : Σ

Γ; {||};β ` mod : |Σ| β fresh β 6∈ fv(Σ)

Γ ` mod : |Σ|
(COMPL)

Units: Γ ` mod : Φ

Γ;L;β ` mod : Σ ` L locates α α, β fresh

Γ ` mod : ∀α.∃β. (L; Σ)
(UNIT)

Fig. 5. Typing Rules for MixML

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 A. Rossberg and D. Dreyer

Core-Language Types and Terms: Γ ` typ ; A Γ ` exp : A

Γ ` mod : [[= A]]

Γ ` typ(mod) ; A
(PTYP)

Γ ` mod : [[A]]+

Γ ` val(mod) : A
(PVAL)

Rules for α, λα.typ, typ1 typ2 are standard.

Type Locators: ` L locates α

α = α1, . . . , αn rng(L) = {α} L is bijective
∀i, j ∈ 1..n : i < j ⇔ L−1(αi) <Paths L−1(αj)

` L locates α
(LOC)

Bidirectional Type Lookup: ` (L1; Σ1)� (L2; Σ2) ; δ

(Σ2 ◦ L−11 ) ] (Σ1 ◦ L−12 ) = {α1 7→A1, . . . , αn 7→An} δ0 = {}
∀i, j ∈ 1..n s.t. i ≤ j : αj 6∈ fv(Ai) δi = δi−1 ] {αi 7→ δi−1Ai}

` (L1; Σ1)� (L2; Σ2) ; δn
(LOOKUP)

Signature Merging: ` Σ1 + Σ2 ⇒ Σ

` Σ2 + Σ1 ⇒ Σ

` Σ1 + Σ2 ⇒ Σ
(MSYM)

` [[= A]] + [[= A]]⇒ [[= A]]
(MTYP)

` A1 ≤ A2

` [[A1]]± + [[A2]]− ⇒ [[A1]]±
(MVAL)

` Σ + {||} ⇒ Σ
(MEMP)

` 6∈ `2 ` {|`1 : Σ1|}+ {|`2 : Σ2|} ⇒ {|`3 : Σ3|}
` {|` : Σ, `1 : Σ1|}+ {|`2 : Σ2|} ⇒ {|` : Σ, `3 : Σ3|}

(MSTR1)

` Σ1 + Σ2 ⇒ Σ3 ` {|`1 : Σ′1|}+ {|`2 : Σ′2|} ⇒ {|`3 : Σ′3|}
` {|` : Σ1, `1 : Σ′1|}+ {|` : Σ2, `2 : Σ′2|} ⇒ {|` : Σ3, `3 : Σ′3|}

(MSTR2)

Fig. 6. Typing Rules for MixML (continued)

Thanks to the implicit kinding of type variables, type contexts degenerate into sim-
ple sets. Because a suitable type context ∆ binding all free type variables in a judgment
is trivially inferable, we omit the ∆’s in the presentation of our rules. We write α fresh
in the premise of a rule to mean that none of α occurs in the context (Γ or Γ;R;β,
respectively) of the conclusion of the rule.

Following RMC, we use shading of certain premises in the typing rules to denote
the delta between the main typing judgment and the static typing judgment ( s̀tat).
The static judgment is used to implement the static pass of recursive linking, as de-
scribed in Section 3. To obtain the static version of any rule, simply remove all shaded
premises, and replace all `’s with s̀tat’s.

Most of the rules for basic modules are fairly straightforward. Notably, rule VAR
always returns a signature |Σ| from the context, which only has exports. The reason is

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:25

that, regardless of whether the module that a variable X is bound to—call it mod—is
fully defined, the module expression X is a definite reference to mod and is therefore
itself fully defined. To take a concrete example, consider the structure {A= [:τ],B =
A}, in which A is an import and B is an export. The atomic term module [:τ], to which
A is bound, has signature [[τ ]]−. However, in the environment under which the binding
of B is type-checked, it is given signature [[τ ]]+. If we did not switch the polarity for the
signatures of module variables (which happens in rules LINK and SEAL), then B would
have signature [[τ ]]−, too, and itself be considered an import, which is clearly wrong.
Also, recall the encoding of sig1 matches sig2 in Section 2. In the encoding, we bind sig1
to a variable X, and then check that the linking of X with sig2 results in a complete
module. This only works because X will export a component corresponding to each of
sig1’s imports, and those exports will be used to satisfy all the imports of sig2.

Rule ITYP for type imports [:knd] uses the import realizer to look up the definition
of its type import (which is A). The other rules for type and term modules are straight-
forward. Note that rule EVAL has a shaded premises because terms are ignored during
the static pass. Instead, an arbitrary well-formed type A may be “guessed”—but as we
will see in Section 9.1, this guess can be made fairly deterministic.

Typing namespaces (rule STR) and projection (rule DOT) is also straightforward. The
latter rule requires the signatures of all components other than the one being projected
out to be of the form |Σ|. This enforces that no term imports (of signature [[A]]−) are
being hidden. (The reasons for enforcing this are discussed in Section 2.) The hidden
components cannot contain type imports either, as the import realizer in the premise
contains only the projected label `.

Rule LINK handles recursive linking. It is the central rule of our system, and while
it is admittedly somewhat complex, it is essentially just a bidirectional generalization
of RMC’s typing rule for recursive modules. Let us first step through the rule ignoring
the L’s and R’s. Type-checking proceeds by first checking mod1, producing a signature
Σ1 for X. As in RMC, checking mod2 requires two passes. The first, “static” pass only
collects type specifications and definitions from mod2. The linking rule then uses bidi-
rectional lookup (rule LOOKUP) to look up mod1’s type imports in mod2 and vice versa.
(RMC only employs unidirectional lookup.)

The bidirectional lookup judgment will fail if it detects any transparent type cycles
(manifest in the side condition αj /∈ fv(Ai) for all i ≤ j). Assuming it succeeds, it yields
a type substitution δ, which is then applied to the signature Σ1 previously computed
for mod1, intuitively “patching” it with the appropriate type definitions from mod2. In
this way, when we type-check mod2 fully in the subsequent “main” pass, we see no dif-
ference between mod2’s type components and the components with the same name in
X. This is the key to avoiding double vision. Lastly, the signatures of mod1 and mod2

are merged, yielding the final signature Σ. Merging is defined by a straightforward
auxiliary judgment (rules MSYM–MSTR2); it assumes the existence of a core type sub-
sumption ` A1 ≤ A2, forming a partial order on types. (Note that rule MTYP relies on
our assumption that all core types are implicitly normalized.)

Now about those L’s andR’s: To deal with type imports and cross-eyed double vision,
the linking rule has to properly adjust locators and realizers as it proceeds. The input
realizer is first split into R, R1 and R2, such that R ] R1 contains the imports (of
the linked module) stemming from mod1, and R ] R2 those from mod2. (That is, R
contains the imports shared by both sides. The side conditions on R1 and R2 ensure
that they do not overlap with any components from the respective other side, so that
the partitioning R]R1 ]R2 is always uniquely determined.) In addition, each module
may have additional local imports, i.e., imports that the other module will satisfy by
providing as exports. These are handled by locally extending the realizer with fresh
locators L1 and L2, which are later used for type lookup. For the final pass on mod2, δ

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26 A. Rossberg and D. Dreyer

is applied to L2, turning it into a realizer that allows mod2 to see all type definitions
from mod1. (Consequently, we do not need to apply δ to Σ2 again when we merge the
signatures.)

Let us walk through the cross-eyed double vision example from Section 3. Because
the linked module has neither imports nor abstract type exports, rule LINK will be in-
voked with the following instantiation: R = R1 = R2 = {||} and β1 = β2 = ∅. However,
it will introduce fresh variables α1 and α2 for the local imports of both sides and define
L1 = {|t : [[=α1]]|} and L2 = {|u : [[=α2]]|} as local realizers for the l.h.s. and r.h.s., respec-
tively. Traversing into the l.h.s. delivers Σ1 = {|t : [[=α1]], u : [[= int]], f : [[α1 → α1]]+|}.
Next, the static pass on the r.h.s. is performed, with a guess for the type of g, yield-
ing Σ′2 = {|t : [[= bool]], u : [[=α2]], g : [[∀α.α]]+|}. Note that we just picked the type ∀α.α for
g, assuming for a minute that the core language provides ML-style polymorphism—
in this particular example, any type would work, but in general we may need to be
slightly more careful with picking a suitable type (see Section 9.1).

Using Σ1, Σ′2, L1, and L2, bidirectional type lookup returns the substitution δ =
{α1 7→ bool, α2 7→ int}. For the main pass on the r.h.s., δ is applied to Σ1 and to
the locator L2, turning the latter into the realizer {|u : [[= int]]|}. Thus, in this pass,
the type-checker will see that X.t is bool, and it will know to implement u as int,
thus avoiding cross-eyed double vision. Finally, it will return the signature Σ2 =
{|t : [[= bool]], u : [[= int]], g : [[int→ bool]]+|}, which can be merged successfully with δΣ1.

Rule SEAL for opaque linking is very similar to rule LINK, but slightly simpler because
the result of opaque linking is not permitted to have any residual imports. (This is
enforced by requiring the incoming realizer to be empty, and requiring that the merged
signature have the form |Σ|.) In addition, the type imports of mod1 (the α1), which mod2

must satisfy, become abstract type exports for the whole module, while the abstract
type exports of mod2 (the β2), are fresh variables only introduced into scope locally
(since mod2 is hidden). The final signature of the module is derived solely from the
signature of mod1—all information about mod2 is kept secret. Finally, note that the α1

are not just local and may in fact occur in Γ. This is the case, e.g., if there is a recursive
binding for the sealed module. Applying δ to Γ locally replaces those abstract types by
their implementations, thereby preventing double vision.

Consider the following example of opaque linking:{
t = [:type],
u = [int],
f = [:u→ t]

}
seals

{
t = [bool],
u = [:type],
f = [λx:u.true]

}
The linked module creates a single abstract export type, say α. Neither constituent
module creates any abstract types independent of the sealing, so rule SEAL is applied
with β1 = β2 = ∅ and α1 = α. Then, Σ1 = {|t : [[=α]], u : [[= int]], f : [[int→ α]]−|} is derived
for the l.h.s. The r.h.s. locally imports u, so we choose a single fresh α2, and Σ′2 =
{|t : [[= bool]], u : [[=α2]], f : [[∀β.β]]+|} will be returned by the static pass (where ∀β.β is
just a guess at the type of f). With lookup returning δ = {α 7→ bool, α2 7→ int}, the main
pass proceeds under context δΓ, where any forward references to α are replaced by
bool. The main pass yields Σ2 = {|t : [[= bool]], u : [[= int]], f : [[int→ bool]]+|}. Merging
δΣ1 and Σ2 produces Σ = Σ2, and since Σ has no residual imports, we have Σ = |Σ|.
In contrast to rule LINK, Σ is not taken as the final signature. Instead, the signature
|Σ1| = {|t : [[=α]], u : [[= int]], f : [[int→ α]]+|} is returned. Note how it keeps t abstract
(using the type name α passed in from the context), while marking f as an export.

Rules EUN and NEW, dealing with unit introduction and elimination, are very simple.
The former invokes the unit typing judgment described below. The latter instantiates
the given unit by choosing an appropriate substitution δ for the unit’s import and ex-
port type names, and then applying δ to the signature Σ of the unit’s constituent mod-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:27

ule. Although the rule appears nondeterministic, the choice of δ is in fact completely
determined by the actual context, which is an input to type-checking. Concretely, what
really is happening is this: we want to type-check new mod under some given context
Γ;R;β

′
. To do so, we type-check mod , yielding a unit signature ∀α.∃β. (L; Σ). Now δ is

simply the (unique) substitution mapping L to R and β to β
′
. In other words, δ’s role is

both renaming β and matching L against the actual realizer imposed by the program
context (e.g., through enclosing uses of linking).

Projection of (core) types and terms (rules PTYP and PVAL) requires the module being
projected from to be complete (i.e., without imports). This prevents meaningless exam-
ples like typ([:type]) or val([:int]). Note that projections of the form typ(X.`s) or
val(X.`s) are always acceptable, because variables are definite references (see above).
The latter may, however, raise a runtime “blackhole” exception at runtime if the com-
ponent X.`s refers to is as yet undefined (Section 8).

Completeness is ensured by rule COMPL, which checks that mod neither has type
imports (by passing in an empty realizer) nor term imports (the signature is of the
form |Σ|). Local abstract types β may not escape their scope by appearing in Σ.

Finally, rule UNIT type-checks a module as a self-contained unit. It introduces fresh
names for import types (α) and export types (β), which become quantified in the result-
ing unit signature. While the rule appears to have to guess the structure of the type
locator L, as well as the number, order, and kinds of α and β, out of nowhere, there is in
fact only one way to choose them, which is easy to compute algorithmically by a simple
pre-pass over mod (Section 9). Intuitively, that is because both L and β are treated in
a linear fashion by the rules. The content of the former is only consumed in rules ITYP
or NEW, and the latter by rules SEAL or NEW.

4.3. Differences from the Conference Version of the Type System
The current presentation of MixML’s basic type system does not deviate much from the
conference version of this article [Dreyer and Rossberg 2008]. Besides the straightfor-
ward generalization to higher-order kinds, and a couple of minor stylistic changes, we
have primarily cleaned up the following details:

(1) We now enforce that all bindings in the environment Γ have signatures of the form
|Σ|, whereas in the previous version, application of the | |-operator was deferred
to the variable rule. This is merely a technical change that eases the correctness
proof for our translation in Section 8.3.

(2) In the static pass, we no longer erase atomic term export signatures [[A]]+ to {||}.
Consequently, the static version of rule EVAL now requires a non-deterministic
guess of a proper type A. This change was necessary in order to support units
as first-class values (see Section 6). Without the change, the new rule PACKAGE
concerning package types could produce results in the static pass that differ from
those in the regular pass, because unit signatures Φ would be structurally different
in the two passes. Moreover, we feel our present approach is cleaner.

(3) The conclusion of rule LINK specifies the partitioning of its input realizer more
strictly. In the conference version, we allowed R1 and R2 to overlap (written as
R1 ∪ R2) instead of making the common R explicit. The underspecification of R1

and R2 makes the completeness proof for our type-checking algorithm non-obvious
(specifically, completeness of “template” computation in Section 9.2). Now we re-
quire a partition R ] R1 ] R2, and the additional side conditions R1 # Σ2 and
R2 # Σ1 uniquely determine the domain of each part.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:28 A. Rossberg and D. Dreyer

Modules mod ::= . . . | [:usig]
Unit Signatures usig ::= mod import `s | mod export `s

Fig. 7. Higher-Order MixML Syntax Extensions

Module Signatures Σ ::= . . . | [[Φ]]−

Unit Signatures Φ ::= ∀α.∃β. (L1;L2; Σ)

∀α.∃β. (L; Σ)
def
= ∀α.∃β. (L;L′; Σ) for some L′

|[[= A]]| def
= [[= A]]

|[[A]]±| def
= [[A]]+

|[[Φ]]±| def
= [[Φ]]+

|{|` : Σ|}| def
= {|` : |Σ||}

−[[= A]]
def
= [[= A]]

−[[A]]±
def
= [[A]]∓

−[[Φ]]±
def
= [[Φ]]∓

−{|` : Σ|} def
= {|` :−Σ|}

|Σ|ε
def
= |Σ|

|{|` : Σ, `′ : Σ′|}|`.`s
def
= {|` : |Σ|`s, `′ : Σ′|}

|Σ|`s1,...,`sn
def
= | . . . |Σ|`s1 . . . |`sn

L\ε def
= {||}

{|` :L, `′ :L′|} \`.`s def
= {|` :L\`s, `′ :L′|}

L \`s1, . . . , `sn
def
= L\`s1 . . . \`sn

Fig. 8. Higher-Order MixML Semantic Object Extensions and Notation

5. HIGHER-ORDER MIXML
The language presented in the previous section provides only first-order units. In this
section we extend it with higher-order units, which enable units to be parameterized
over other units. Higher-order units thus subsume the functionality of higher-order
functors in traditional ML-style module systems (albeit with an SML-style generative
semantics, not an OCaml-style applicative semantics).

5.1. Syntax
Figure 7 shows the syntactic extensions necessary for supporting higher-order units,
relative to the “basic” language from Figure 1. Essentially, all that is needed is to add
atomic unit imports [:usig]. However, to describe a unit import, it is necessary to
introduce a new syntactic class usig of unit signatures.

A unit signature takes one of two symmetric forms, written mod import `s and
mod export `s. In both forms, mod is a MixML module representing an ML signa-
ture, i.e., it must have neither term exports nor abstract type exports. The import and
export clauses serve to identify which components specified in mod are to be treated
as imports and which as exports in the unit that the usig is describing. In the case
of mod import `s, the list `s of paths enumerates all components of mod that are to be
considered imports, treating all others as exports. Conversely, mod export `s lists the
exports, and treats all other components as imports. A path `s ∈ `s may point to an
entire structure in mod , in which case the annotation applies to all its subcomponents.

For example, recall the unit UA from the end of Section 2.

[(X = new S) with {A=modA}]

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:29

Modules: Γ;L;β ` mod : Σ

Γ ` usig ; Φ

Γ; {||}; ∅ ` [:usig] : [[Φ]]−
(IUN)

Unit Signatures: Γ ` usig ; Φ

Γ ` mod : ∀α.∃∅. (L; Σ) |Σ| = −Σ
L = L1 ] L2 ` L1 locates α1 ` L2 locates α2 L1 = L\`s

Γ ` mod export `s; ∀α1.∃α2. (L1;L2; |Σ|`s)
(EXPORT)

Γ ` mod export `s; ∀α1.∃α2. (L1;L2; Σ)

Γ ` mod import `s; ∀α2.∃α1. (L2;L1;−Σ)
(IMPORT)

Signature Merging: ` Σ1 + Σ2 ⇒ Σ

` [[Φ]]− + [[Φ]]− ⇒ [[Φ]]−
(MUN1)

` Φ1 ≤ Φ2

` [[Φ1]]+ + [[Φ2]]− ⇒ [[Φ1]]+
(MUN2)

Unit Signature Matching: ` Φ1 ≤ Φ2

` (L11; Σ1)� (L22; Σ2) ; δ ` δΣ1 +−δΣ2 ⇒ |Σ|
` ∀α1.∃β1. (L11;L12; Σ1) ≤ ∀α2.∃β2. (L21;L22; Σ2)

(MATCH)

Fig. 9. Higher-Order MixML Type System Extensions

We can assign it the following unit signature:

(new S) export A

Or alternatively:

(new S) import B

We provide both forms merely as a convenience.
The encoding of the functor F given in Section 2,

λ(X:sig).mod
def
= [{Arg .X = sig , Res=mod}]

can be classified with a unit signature as follows (assuming that sig ′ is a suitable
specification of its body mod ):

{Arg .X = sig , Res= sig ′} import Arg

This corresponds to the ML functor signature (X : sig)→ sig ′.
But unit signatures are more flexible than that. For example, the following varia-

tion of the above unit signature has no counterpart in traditional ML, assuming sig
contains occurrences of X:

{Res .X = sig ′, Arg= sig} import Arg

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:30 A. Rossberg and D. Dreyer

This would be the signature for a “functor” whose argument signature depends on the
functor’s own result! Imports and exports can also be specified in mutual recursion, by
making suitable use of linking or the rec form we defined earlier—a use case would be
describing the unit signatures of the units MkTree and MkForest from Figure 3. (More-
over, we are obviously not limited, as functors are, to grouping imports and exports
into separate structures.)

Unit signature bindings (i.e., bindings of unit signatures usig to signature variables S
for convenience) are easy to encode as well. Just as with regular signature bindings, we
simply suspend the unit signature using a unit. That is, we bind S = [[:usig]]. Then,
whenever we wish later in the program to create a unit import U of signature usig ,
we simply bind U = new S. As units subsume functors, this demonstrates how MixML
encodes functor signature bindings, of the kind that exist in higher-order dialects of
the ML module system.

5.2. Semantic Objects
In order to be able to express unit imports, the definition of semantic objects has to be
extended in two respects, shown in Figure 8:

(1) Atomic unit signatures can be marked as imports with a negative polarity as in
[[Φ]]−, analogously to atomic term signatures.

(2) Unit signatures Φ contain two type locators L1 and L2, respectively mapping the
import types α and abstract export types β. The export locator L2 is used for higher-
order unit signature matching and thus only is needed when representing the
translation of MixML-level usig ’s; we omit it in other places.

The extensions to semantic signatures come with an adapted definition of absolute
signatures |Σ|, and a new meta-operator −Σ that switches the polarities of all atomic
term and unit signatures projectible from Σ. The other meta-operations are explained
below.

5.3. Typing Rules
Figure 9 shows the additional rules (and changes to existing rules) that are necessary
to incorporate unit imports.

Rule IUN is the obvious rule for unit imports. Note that rule NEW is left unchanged:
it still requires that mod be a unit export module, i.e., that it actually contains a unit
definition. Again, the unit it contains is free to have imports, which will become imports
of newmod itself. More concretely, the premise prevents examples like new [:usig] from
type-checking, which would instantiate a non-existent unit, but permits new [[:usig]],
which creates a module consisting of a single unit import (as seen in the encoding of
unit signature bindings given earlier).

The two rules for elaborating unit signatures are simpler than they might look.
Rule EXPORT checks that mod is like an ML signature in that it does not export any
fresh abstract types or term components (|Σ| = −Σ). It then partitions the components
according to the paths listed in `s: the notation |Σ|`s (defined in Figure 8) turns those
components reachable from `s into exports and leaves the others unchanged as im-
ports. The import type variables and the respective locator are partitioned in a similar
way. The second form of unit signature (with an import clause) is handled in the dual
manner. Note that both the notations |Σ|`s and L\`s require that all paths from `s
actually exist in the respective signature or locator.

One interesting restriction is that the merging of two unit imports (rule MUN1) does
not allow their signatures to differ. This restriction is in place in order to ensure prin-
cipal types, as we will explain in Section 5.4 below. In contrast, when matching unit

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:31

exports against unit imports (rule MUN2), merging allows subtyping in the form of unit
signature matching. The restriction on merging unit imports does not place any limi-
tations, though, on the MixML encoding of ML-style higher-order functors, since that
encoding will never attempt to merge two unit imports—ML signature matching al-
ways amounts to merging an export with an import, either in co- or in contravariant
direction.

Rule MATCH defines unit signature matching in terms of linking. The rule checks
whether the exports of Φ1 subsume the exports of Φ2 and, contravariantly, the imports
of Φ2 subsume those of Φ1. It does so by inverting the module signature Σ2 from Φ2

(i.e., swapping imports and exports) and trying to link it against Σ1. If this succeeds
without any remaining imports, we know that the exports of subsignature Φ1 in fact
match the exports of Φ2, and conversely for the (contravariant) imports of the two sig-
natures. Type components are dealt with by using the bidirectional lookup judgment
to simultaneously look up the type exports of Σ2 in Σ1 and the imports of Σ1 in Σ2. If
the lookup succeeds, we know that the type exports of Φ1 subsume those of Φ2, and
contravariantly, the type imports of Φ2 subsume those of Φ1. Notably, this is the only
rule that makes use of export locators. In the case of Φ2, an export locator is guaran-
teed to exist because Φ2 is a target signature—invariants of the type system (discussed
in Section 9) ensure that Φ2 must be the translation of some MixML usig .

5.4. Characteristics of Unit Signature Matching
We feel that rule MATCH is remarkably elegant—certainly it is the most concise formu-
lation of higher-order signature matching that we have ever seen. At the same time, it
is more general than standard functor signature matching, because it is based on sym-
metric first-order merging, which is more general than the directed first-order match-
ing seen in conventional ML modules. However, this generality leads to characteristics
that are slightly different than what the reader may expect.

Higher-order signature matching is typically understood as a form of co/contra-
variant subtyping [Harper et al. 1990; Dreyer et al. 2003; Rossberg et al. 2010]. Al-
though unit signature matching in higher-order MixML plays a similar role, and we
use a suggestive notation, it is not actually a subtype ordering on unit signatures:
while it is easy to see that the relation is reflexive, it is neither transitive nor anti-
symmetric.

Let us abbreviate Φ(Σ) = ∀∅.∃∅. ({||}; {||}; Σ). Then from rule MATCH we can derive
the matching Φ({|` : [[= int]]|}) ≤ Φ({||}), as one would expect. It may be somewhat more
surprising that the inverse Φ({||}) ≤ Φ({|` : [[= int]]|}) can also be derived, but this be-
havior follows naturally from our account of signature matching in terms of signature
merging. Similarly, we can derive Φ({||}) ≤ Φ({|` : [[= bool]]|}), of course. The transitive
relation Φ({|` : [[= int]]|}) ≤ Φ({|` : [[= bool]]|}), however, does not hold, because int and
bool are incompatible type definitions when merged directly.

Moreover, despite being in mutual matching relation, Φ({|` : [[= int]]|}) and Φ({||}), are
not equivalent unit signatures, as there are contexts in which only one of them is
usable. For example, if X : [[Φ]]+ with Φ being one of the two signatures, then (new X).`
would only be well-typed given the former, while conversely, X with [:{`= [bool]}]
would demand the latter to avoid a type clash.

A consequence of this lack of anti-symmetry is that we had to opt for the rather
conservative formulation of the higher-order merging rule MUN1 mentioned earlier.
Consider the “obvious” relaxation of that rule, namely:

` Φ1 ≤ Φ2

` [[Φ1]]− + [[Φ2]]− ⇒ [[Φ1]]−
(MUN1’)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:32 A. Rossberg and D. Dreyer

Types typ ::= . . . | pack(usig)
Terms exp ::= . . . | pack(mod)
Modules mod ::= . . . | unpack(exp as usig)

Fig. 10. Syntax Extensions for Units as First-Class Values

Type Constructors A ::= . . . | 〈[|Φ|]〉

Core-Language Terms: Γ ` exp : A

Γ ` mod : Φ
Γ ` pack(mod) : 〈[|Φ|]〉

(PACK)

Core-Language Types: Γ ` typ ; A

Γ ` usig ; Φ

Γ ` pack(usig) ; 〈[|Φ|]〉
(PACKAGE)

Modules: Γ;L;β ` mod : Σ

Γ ` exp : 〈[|∀α.∃β. (L; Σ)|]〉 Γ ` usig ; ∀α.∃β. (L; Σ) dom(δ) = {α, β}

Γ; δL; δβ ` unpack(exp as usig) : δΣ
(UNPACK)

Fig. 11. Type System Extensions for Units as First-Class Values

Along with the symmetry rule MSYM, this more permissive version would allow us
picking either [[Φ1]]− or [[Φ2]]− as the resulting signature in the case that Φ1 and Φ2

mutually match each other. This is fine as long both choices are equivalent, but short
of anti-symmetry, that is not generally the case. Hence, rule MUN1’ would destroy prin-
cipal types. For example,

[:{`= [int]}] with [:{}]
could be given either of the two incompatible signatures [[Φ({|` : [[= int]]|})]]− or [[Φ({||})]]−
from above.

It is worth noting that the same problem would also arise for term imports
(rule MVAL) if we hadn’t assumed that core subtyping is a partial order. Fortunately,
this assumption holds true for many interesting languages (including ML, up to ap-
propriate normalization of polymorphic types). For other languages, we would need to
treat merging of term imports in a manner analogous to that of unit imports.

6. UNITS AS FIRST-CLASS VALUES
So far, the language we have presented provides modules and units as second-class
objects, defined over a (mostly arbitrary) core language. However, it is sometimes de-
sirable to choose or compute modules within core terms based on information that is
only available at run time. In this section, we extend MixML with the ability to create
packages, i.e., units that are packaged up as first-class core-language values.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:33

6.1. Syntax
Figure 10 gives the syntax for the package extension. The core-language expression
pack(mod) creates a package from unit mod . The type of a package value can be denoted
by pack(usig), where usig describes the signature of the embedded unit (Section 5). The
module expression unpack(exp as usig) extracts the module from a package exp. Again,
the unit signature usig describes the package’s signature.

For example, assume there are two different modules, TreeMap and HashMap, provid-
ing implementations of an ADT for finite maps, with the same signature MAP. We can
pack them up as first-class values:

let treeMap= pack(TreeMap) in
let hashMap= pack(HashMap) in . . .

Somewhere else, we can pick one of these maps depending on the expected number n
of elements (computed elsewhere) that have to be stored:

unpack((if n ≤ 100 then treeMap else hashMap) as MAP import ∅)

Using two packages interchangeably requires that they have the same type—in this
case, pack(MAP import ∅). If the units to be packaged have different signatures, but
match a common “super ”signature, like MAP in this example, then sealing can be used
to explicitly coerce them to the common signature beforehand:

let treeMap= pack(TreeMap :> MAP) in
let hashMap= pack(HashMap :> MAP) in . . .

The notion of first-class unit we define here differs slightly from previous formula-
tions [Russo 1999a; Dreyer et al. 2003; Rossberg et al. 2010] in that it always embeds
the argument module as a (suspended) unit instead of an (already evaluated) module.
In the presence of higher-order modules, both formulations are equivalent in expres-
sive power. The reason for our design is mainly technical simplicity: it allows us to
reuse most of the typing rules for higher-order units and unit signatures. The more
conventional form of first-class modules can easily be recovered through the following
syntactic definitions:

pack(mod as sig)
def
= let X =mod in pack(X :> sig)

pack(sig)
def
= pack(sig import ∅)

unpack(exp as sig)
def
= unpack(exp as sig import ∅)

The effect of this encoding is that (1) packed modules are evaluated prior to suspension,
i.e., the suspension will be a ‘constant’ unit, and (2) packed modules may only contain
exports, not imports, i.e., they have to be complete. (Of course, because units are higher-
order, they can nevertheless export a proper unit.)

6.2. Semantic Objects and Typing Rules
To represent packages internally, we extend the language of type constructors to in-
clude package types: a type 〈[|Φ|]〉 classifies a package containing a unit with the sig-
nature Φ. We assume that the type well-formedness judgment ` A ⇑ knd asserts that
each semantic signature Φ in a package type is well-formed, written ` Φ ⇑, a notion
that will be made precise in Section 8.3.

Figure 11 presents the straightforward typing rules for packages. Rules PACK
and PACKAGE mirror the rules EUN and IUN for (higher-order) units, except that the
expressions form core terms and types instead of modules. Rule UNPACK in turn mir-
rors rule NEW for the new construct. It uses the signature annotation to derive the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:34 A. Rossberg and D. Dreyer

package signature in the static pass of type-checking recursive linking, where we can-
not derive it from the expression exp. In the main pass, the rule requires the actual
package signature to coincide with the annotation. A more liberal rule only requiring
the package signature to match the annotation would be feasible, but potentially in-
terferes with type inference in the core language. (It should be mentioned that, apart
from this choice, we ignore the issue of core-language type inference for this presenta-
tion. Consequently, unlike in previous work [Russo 1999a; Dreyer et al. 2003; Rossberg
et al. 2010], we do not require a signature annotation on the pack construct. Should
type inference be desired, this is straightforward to add.)

6.3. Signature Normalization
A somewhat subtle technical detail with packages is signature equivalence: the core
language does not necessarily support coercive subtyping, so package types are only
compatible when they embed equivalent signatures. In order to avoid over-restrictive
typing, we at least want to make sure that seemingly equivalent syntactic unit sig-
natures generate equivalent semantic signatures. For example, we want the syntactic
types pack({type t, type u} import ∅) and pack({type u, type t} import ∅) to be repre-
sented by equivalent semantic types. In general, this requires normalizing semantic
signatures [Rossberg et al. 2010]—specifically, imposing a canonical ordering on quan-
tifiers binding abstract types like t and u.

Fortunately, in our type system, explicit unit signatures stemming from usig ’s (and
thus explicit package types) are normalized by construction. All such unit signatures
are formed from modules that have only imports, and rule LOC for locators prescribes
an ordering on import variables α that depends only on the global ordering relation
on paths. Furthermore, the type system ensures that all import variables of unit sig-
nature actually occur in the signature (unused import variables would correspond to
“dropped” imports, which are not allowed). So both the above package types will be rep-
resented by the same semantic type 〈[|∀∅.∃β1β2. ({||}; {|t : [[=β1]], u : [[=β2]]|})|]〉 (assuming
t <Paths u).

However, the story is somewhat different for implicit unit signatures as assigned to
module expressions by the type system: exports can freely be dropped from modules,
e.g., via projection. So derived signatures are not necessarily normalized with respect
to their export variables. For example, the package

pack((mod :> {type t, type u}).t)

has the semantic type 〈[|∀∅.∃β1β2. ({||}; [[=β1]])|]〉, which includes a spurious binding for
the export type variable β2 representing the local type u. Consequently, this package
is incompatible with the package type pack([:type] import ∅), which is represented as
∀∅.∃β. ({||}; [[=β]]).

The problem could be avoided in the type system by normalizing the unit signature
in rule PACK. We refer to Rossberg et al. [2010] for the details of that approach. Alter-
natively, it is always possible for the programmer to explicitly canonicalize a package
by re-sealing with an explicit signature before packaging:

pack((mod :> {type t, type u}).t :> [:type])

This amounts to putting a type annotation on the pack construct, as is mandatory in
most previous systems with first-class modules.

6.4. First-Class vs. Higher-Order Units
As a final remark, it should come as no surprise that the addition of units as first-class
values almost subsumes higher-order units. That is, given packages, we can define

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:35

units via the following syntactic sugar:

[mod]
def
= [pack(mod)]

[:usig]
def
= [:pack(usig)]

new mod as usig
def
= unpack(val(mod) as usig)

It should be intuitively clear from looking at the respective typing rules that this en-
coding yields the same typings. The only limitation is that we would have to require
a signature annotation on every new. This limitation is due to the encoding of units
as values, which implies that no type information about them is available during the
static pass—yet this information is required for the type-checking of new.

In principle, it should be possible to refine the rules for the static pass such that it
can derive type information at least for a limited subset of expressions—in particular,
for simple cases like val(mod) as needed for the unit encoding. We did not pursue this
path, however, since the added complexity for such a refinement seems to far outweigh
the simplification gained by eliminating the three typing rules for the unit constructs.

7. INTERNAL LANGUAGE
Giving a type-preserving direct-style operational semantics for a language with the
type-theoretic complexity of ordinary ML is known to be very difficult, and doing the
same for MixML is even more difficult. Instead, we will follow the “elaboration” ap-
proach of Harper and Stone [2000] and define the dynamic semantics of MixML by
translation into a simpler and more standard internal language. Soundness of the
translation (that is, preservation of well-typedness) together with soundness of the
internal language is then sufficient to establish type soundness for MixML.

The internal language we employ is named LTG (standing for linear type generativ-
ity) and is a variant of Dreyer’s RTG calculus for recursive type generativity [Dreyer
2007a]. However, it incorporates several simplifications and generalizations relative to
RTG:

— Instead of tracking definedness of type names using an effect system, LTG employs
a more general and uniform substructural type system [Walker 2005; Ahmed et al.
2005] that treats undefined type variables as linear capabilities.

— LTG allows cyclic definitions for abstract type variables. As a result, certain as-
pects of the type system become simpler—for example, we do not need to track what
Dreyer [2007a] called “stability”, nor do we need to treat recursive type definitions
in some special way. LTG’s type system remains sound, but becomes difficult to type-
check in general, because type normalization might diverge and consequently, type
equivalence is probably undecidable (at least we do not know any algorithm for
deciding it). However, this has no effect on decidability of MixML’s external type
system, because that does not allow any transparent type cycles (see Section 9).

— LTG provides single-assignment references to express backpatching for terms. Un-
like in the conference version of this article [Dreyer and Rossberg 2008], LTG’s lin-
ear type system, together with soundness of elaboration, enables us to track that all
components of a complete module are defined exactly once. (LTG’s type system still
does not check whether references are assigned before being accessed, a deliberate
choice we made for the treatment of cyclic term definitions, see Section 3.)

7.1. LTG Basics
Figure 12 shows the syntax of LTG, along with some notational abbreviations that we
will use throughout this article. As usual, we identify terms up to the renaming of
bound variables (besides the usual binders, newα:κ in e binds α in e) and adopt Baren-
dregt’s hygiene convention that bound variables are assumed distinct from any free

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:36 A. Rossberg and D. Dreyer

Modes ι ::= U | L

κ̂ ::= κι

τ̂ ::= τ ι

Kinds κ ::= type | κ1 → κ2
Types τ ::= τ̂1 → τ̂2 | {` : τ̂} | ∀α:κ̂.τ̂ | ∃α:κ̂.τ̂ | ?τ | α | λα:κ.τ | τ1 τ2
Values v ::= λx:τ̂ .e | {`=v} | λα:κ̂.e | 〈τ, v〉τ ′ | x
Terms e ::= v | e1 e2 | {`=e} | let {`=x}=e1 in e2 | new τ | def e1:=e2 | ! e

| e1 τ2 | 〈τ, e〉τ | let 〈α, x〉=e1 in e2 | newα:κ in e | def τ1:=τ2 in (e:τ̂)

Type environments ∆ ::= ε | ∆, α:κ̂
Equivalence environments Ψ ::= ε | Ψ, α:=τ
Value environments Γ ::= ε | Γ, x:τ̂
Environments Ξ ::= ∆; Ψ; Γ

∀ια:κ.τ
def
= ∀α1:κι1.(· · · ∀αn:κιn.(τ)ι · · ·)ι

e1; e2
def
= let {}=e1 in e2

e.`
def
= let {`=x, `′=x′}=e in x where e : {`:τ̂ , `′:τ̂ ′}

e|`
def
= let {`=x, `′=x′}=e in {`=x} where e : {`:τ̂ , `′:τ̂ ′}

{e, `=e′} def
= let {`′=x′}=e in {`′=x′, `=e′} where e : {`′:τ̂ ′}

let x=e in e′
def
= let {`=x}= {`=e} in e′

newα:κ in e
def
= newα1:κ1 in · · · newαn:κn in e

def α:=τ in e
def
= def α1:=τ1 in · · · def αn:=τn in e

Ξ, α:κ̂
def
= ∆, α:κ̂; Ψ; Γ where Ξ = ∆; Ψ; Γ and α /∈ fv(Ψ,Γ)

Ξ, α:=τ
def
= ∆; Ψ, α:=τ ; Γ where Ξ = ∆; Ψ; Γ

Ξ, x:τ̂
def
= ∆; Ψ; Γ, x:τ̂ where Ξ = ∆; Ψ; Γ

Fig. 12. LTG Syntax

variables appearing in the context. We write fv( ) for the set of free (type and term)
variables of a syntactic objects, and dom( ) for the set of (type or term) variables in the
domain of an environment or substitution.

If we ignore everything involving mode qualifiers ι and environment splitting Ξ1 ∗Ξ2

for a second, then the language is a relatively standard extension of System Fω. Prod-
ucts take the form of labeled records, and we identify record types {` : τ̂} up to reorder-
ing of labels. Values of existential type are written 〈τ, v〉∃α:κ̂.τ̂ , where τ is the witness
type and ∃α:κ̂.τ̂ an annotation determining a unique type for the value. In order to
ease some of the developments in succeeding sections, we assume that type variables
are implicitly kinded for LTG as well, and thus impose the syntactic restriction that in
any occurrence of “α:κ” it holds that κα = κ.

Types of the form ?τ classify single-assignment references (or just references here-
after) that—eventually—contain values of type τ . Single-assignment references enable
the creation of “names” for values before the values are actually known, which is use-
ful in modeling recursive linking. A fresh, uninitialized reference is created with the
expression new τ . Only after defining it through assignment (def e1:=e2) can it be suc-
cessfully read (!e). References are non-strict: assignment does not evaluate e2. Instead,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:37

it stores the computation e2 in the reference denoted by e1, and this computation will
be re-executed whenever e1 is dereferenced. This semantics only really makes sense if
e2 is restricted to be a “pure” expression (where purity may include dereferencing of
single-assignment references), and indeed this will always be the case in our elabora-
tion translation.4

An analogous feature exists for types: the expression form newα:κ in e introduces a
new abstract type name α that can be used within e. Later, within e, α can be defined
via the construct def α:=τ in (e′ : τ̂).5 The type annotation τ̂ in the def form ensures
unique types. The definition of α is only visible within e′, with the knowledge about
that equivalence recorded in the equivalence environment Ψ.6 It can be utilized in the
conversion rule (econv at the bottom of Figure 13), which invokes the type equivalence
judgment Ψ ` τ1 ≡ τ2. (Unlike in the MixML rules, type equivalence is fully explicit
in LTG, i.e., we do not assume implicit normalization in this section.) Most of the rules
for this judgment (Figure 13) are the standard (inductive) rules of System Fω (β and
η-reduction for type constructors, plus the necessary congruence rules); the only new
rule, qdelta, allows invoking assumptions from the environment in the obvious manner.

Generative type names with a separate definition scope are the central feature taken
from RTG [Dreyer 2007a]. Both references and type names together allow us to deal
with the recursive nature of linking in MixML by “forward declaring” values and types
and then using “backpatching” to define them. The details of this technique will be
explained in Section 8.

However, when doing so, we want to make sure that every forward declaration has
a corresponding definition. In RTG (and in the technical appendix to the conference
version of this article [Dreyer and Rossberg 2008; Rossberg and Dreyer 2008]) the type
system ensured that for type names by applying a simple, ad hoc notion of linearity
(disguised as effects in RTG). No such guarantee was present for references, though.
In the present work, we address this by moving to a more general form of linearity
that uniformly covers type and value definitions.

7.2. Linearity
Our approach to linearity is to beef up the language with substructural mode qualifiers,
ranged over by ι, that annotate every type [Walker 2005; Ahmed et al. 2005]. The only
two modes are U (unrestricted) and L (linear).7 A type that only contains U annotations
has the same meaning as a plain old System Fω type—and we sometimes take the
liberty of dropping U annotations to avoid clutter. In contrast, a linear mode enforces
that a respective value (or type name, see below) is consumed eventually. In the case
of reference types, linearity only restricts assignment, not reading, which is always
possible (see below). In that sense, our linear references differ fundamentally from
previous work.

The typing judgment Ξ ` e : τ̂ classifies terms by moded types. Perhaps more sur-
prisingly, the kinding judgment ∆ ` τ : κ̂ analogously classifies types by moded kinds,
in order to deal with linearity of undefined type names. Environments Ξ are triples

4In the Technical Appendix to the conference version of this article [Dreyer and Rossberg 2008], we actually
used lazy references, where e2 would only be evaluated once and then memoized. But memoization was
inessential to the semantics, so we dropped it for the sake of simplicity.
5In order to make it closed under substitution, the actual syntax of this construct is def τ1:=τ2 in (e : τ̂). In
any well-typed term, τ1 will be a variable, and any well-formed type substitution will maintain this property.
6In the original RTG presentation, Ψ was folded into ∆.
7As a matter of terminology, we refer to an unannotated τ as a “type”, and call τ ι a moded type (which
we range over by the meta-variable τ̂ ). Other authors often speak of τ as a “pre-type”, and only consider
τ ι a type. In the higher-order setting we are dealing with here, the former terminology is somewhat more
convenient.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:38 A. Rossberg and D. Dreyer

Types: ∆ ` τ : κ̂ ∆1,∆2 � U

∆1, α:κ̂,∆2 ` α : κ̂
(tvar)

∆ ` τ1 : typeU ∆ ` τ2 : typeU

∆ ` τ ι11 → τ ι22 : typeU (tarr)
∆ ` τ1 : typeU · · · ∆ ` τn : typeU ∆ � U

∆ ` {` : τ ι} : typeU
(trec)

∆, α:κU ` τ : typeU

∆ ` ∀α:κι1 .τ ι2 : typeU (tall)
∆, α:κU ` τ : typeU

∆ ` ∃α:κι1 .τ ι2 : typeU (tex)
∆ ` τ : typeU

∆ ` ?τ : typeU (tref)

∆, α:κU
1 ` τ : κU

2

∆ ` λα:κ1.τ : (κ1 → κ2)U (tfun)
∆ ` τ1 : (κ2 → κ)U ∆ ` τ2 : κU

2

∆ ` τ1 τ2 : κU (tapp)

Type Equivalence: Ψ ` τ1 ≡ τ2

Ψ ` α ≡ Ψ(α)
(qdelta)

Ψ ` (λα:κ.τ1) τ2 ≡ τ1[τ2/α]
(qbeta)

α /∈ fv(τ)

Ψ ` λα:κ.τ α ≡ τ
(qeta)

...and standard congruence rules...

Terms: Ξ ` e : τ̂ Ξ1,Ξ2 � U

Ξ1, x:τ̂ ,Ξ2 ` x : τ̂
(evar)

∆ ` τ1 : typeU Ξ, x:τ ι11 ` e : τ̂2 Ξ � ι
∆ ∗ Ξ ` λx:τ ι11 .e : (τ ι11 → τ̂2)ι

(efun)
Ξ1 ` e1 : (τ̂2 → τ̂)ι Ξ2 ` e2 : τ̂2

Ξ1 ∗ Ξ2 ` e1 e2 : τ̂
(eapp)

Ξ1 ` e1 : τ̂1 · · · Ξn ` en : τ̂n τ̂ � ι Ξ0 � U

Ξ0 ∗ Ξ1 ∗ · · · ∗ Ξn ` {`=e} : {` : τ̂}ι
(erec)

Ξ1 ` e1 : {` : τ̂}ι Ξ2, x:τ̂ ` e2 : τ̂ ′

Ξ1 ∗ Ξ2 ` let {`=x}=e1 in e2 : τ̂ ′
(eprj)

Ξ, α:κ̂ ` e : τ̂ Ξ � ι
Ξ ` λα:κ̂.e : (∀α:κ̂.τ̂)ι

(egen)
Ξ ` e : (∀α:κ̂.τ̂)ι ∆ ` τ2 : κ̂

Ξ ∗∆ ` e τ2 : τ̂ [τ2/α]
(einst)

∆1 ` τ1 : κ̂ Ξ ` e : τ̂ [τ1/α] ∆2 ` ∃α:κ̂.τ̂ : typeU κ̂ � ι τ̂ � ι
∆1 ∗ Ξ ∗∆2 ` 〈τ1, e〉∃α:κ̂.τ̂ : (∃α:κ̂.τ̂)ι

(epack)

Ξ1 ` e1 : (∃α:κ̂1.τ̂2)ι Ξ2, α:κ̂1, x:τ̂2 ` e2 : τ̂ α /∈ fv(τ̂)

Ξ1 ∗ Ξ2 ` let 〈α, x〉=e1 in e2 : τ̂
(eopen)

∆ ` τ : typeU Ξ � U

∆ ∗ Ξ ` new τ : (?τ)L (enewe)
Ξ1 ` e1 : (?τ)L Ξ2 ` e2 : τU Ξ2 � U

Ξ1 ∗ Ξ2 ` def e1:=e2 : {}U (edefe)

Ξ, α:κL ` e : τ̂ α /∈ fv(τ̂)

Ξ ` newα:κ in e : τ̂
(enewt)

∆1 ` α : κL ∆2 ` τ2 : κU Ξ, α:=τ2 ` e : τ̂

∆1 ∗∆2 ∗ Ξ ` def α:=τ2 in (e : τ̂) : τ̂
(edeft)

Ξ ` e : (?τ)U

Ξ ` !e : τU (eget)
Ξ ` e : τ ι1 Ψ of Ξ ` τ1 ≡ τ2 ∆ ` τ2 : typeU

Ξ ∗∆ ` e : τ ι2
(econv)

Fig. 13. LTG Static Semantics (Main Judgments)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:39

Environments: ` ∆ ∆ ` Ψ ∆ ` Γ ` Ξ

` ε
(tenil)

` ∆ α /∈ dom(∆)

` ∆, α:κ̂
(tecons)

∆ ` ε
(qenil)

∆1 ` Ψ ∆2 ` τ : κU α:κU ∈ ∆1 α /∈ dom(Ψ)

∆1 ∗∆2 ` Ψ, α:=τ
(qecons)

∆ ` ε
(eenil)

∆1 ` Γ ∆2 ` τ : typeU x /∈ dom(Γ)

∆1 ∗∆2 ` Γ, x:τ ι
(eecons)

` ∆ ∆ ` Ψ ∆ ` Γ

` ∆; Ψ; Γ
(env)

Mode Bounds: ι � ι κ̂ � ι τ̂ � ι ∆ � ι Γ � ι Ξ � ι

U � L ι � ι ι � ι′

κι � ι′
ι � ι′

τ ι � ι′

ε � ι
∆ � ι κ̂ � ι

∆, α:κ̂ � ι ε � ι
Γ � ι τ̂ � ι

Γ, x:τ̂ � ι
∆ � ι Γ � ι

∆; Ψ; Γ � ι

Splitting: κ̂1 ∗ κ̂2 τ̂1 ∗ τ̂2 ∆1 ∗∆2 Γ1 ∗ Γ2 Ξ1 ∗ Ξ2

κ̂1 ∗ κ̂2 = κ̂2 ∗ κ̂1
κU ∗ κU = κU

κL ∗ κU = κL

τ̂1 ∗ τ̂2 = τ̂2 ∗ τ̂1
τU ∗ τU = τU

(?τ)L ∗ (?τ)U = (?τ)L

{` : τ̂1}L ∗ {` : τ̂2}ι = {` : τ̂1 ∗ τ̂2}L if τ̂2 � ι
ε ∗ ε = ε

∆1 ∗ ∆2 = ∆2 ∗∆1

∆1, α:κ̂1 ∗ ∆2, α:κ̂2 = (∆1 ∗∆2), α:(κ̂1 ∗ κ̂2)

ε ∗ ε = ε
Γ1 ∗ Γ2 = Γ2 ∗ Γ1

Γ1, x:τ L ∗ Γ2 = (Γ1 ∗ Γ2), x:τ L if x /∈ dom(Γ2)
Γ1, x:τ̂1 ∗ Γ2, x:τ̂2 = (Γ1 ∗ Γ2), x:(τ̂1 ∗ τ̂2)

(∆1; Ψ; Γ1) ∗ (∆2; Ψ; Γ2) = (∆1 ∗∆2); Ψ; (Γ1 ∗ Γ2)
Ξ ∗ ∆ = Ξ ∗ (∆; Ψ of Ξ; ε)

Liberation: ∆U! ΓU!

εU! = ε
(∆, α:κι)U! = ∆U!, α:κU

εU! = ε
(Γ, x:(?τ)ι)U! = ΓU!, x:(?τ)U

Fig. 14. LTG Static Semantics (Auxiliary Judgments and Definitions)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:40 A. Rossberg and D. Dreyer

of type environments ∆, term environments Γ, and type equivalence environments Ψ,
as defined in Figure 12. Instead of having separate environments for unrestricted and
linear variables (as is common in many formulations of linear type systems), our sys-
tem simply assigns moded types and kinds to the term and type variables in Γ and ∆,
respectively. We say that an environment is unrestricted if all its variables have unre-
stricted mode. This is expressed by the notation Ξ � U that is defined in Figure 14.

An environment can be split pointwise, written Ξ1 ∗ Ξ2 according to the definition
given in Figure 14. (Despite the name, the equations, when read left to right, actually
define a deterministic merging operation. However, since inference rules are typically
read backwards, which amounts to applying the definitions right to left, it can as well
be interpreted as “splitting” the right-hand side.) Unrestricted variables will simply
be copied (i.e., an unrestricted environment can be freely copied). For a linear variable,
the standard case is to put it in only one of the resulting environments. However, there
are two exceptions: (1) a linear type name or a linear reference can be split into a linear
and a non-linear copy, for reasons described below, and (2) a linear record can be split
into two copies if each component can be split recursively. The latter allows forming
records of linear references while still maintaining the ability to split them implicitly.

Linear references. When initially created with new τ , a reference is given linear type
(?τ)L (rule enewe). This type represents the capability to define the associated value.
Defining a linear reference x via def x:=e consumes the capability (rule edefe). Conse-
quently, only one definition can take effect at runtime. Moreover, the capability must
be consumed at some point, so a linear reference also represents an obligation to define
its contents.

Reading (dereferencing, ! e) can only be performed from an unrestricted reference
(rule eget). How do we get one? By binding a linear one to a variable and splitting the
resulting environment into a linear and an unrestricted copy of itself. While other
linear type systems often provide explicit constructs for this purpose (e.g., let! and
friends [Wadler 1990]), this form of copying is entirely implicit in LTG. For exam-
ple, the function λx:(?int)L. def x:=5; !x is well-formed because, when type-checking its
body, the environment x:(?int)L can be split into x:(?int)L ∗ x:(?int)U, such that the first
occurrence of x in the function body has linear type, while the second is unrestricted.

Note that linear splitting does not ensure that a reference is only read after being
defined—the function λx:(?int)L. !x; def x:=5 is well-typed in our system as well, but will
raise a runtime error. As we explained in Section 3, this is a deliberate design choice.

The contents of a reference must always be unrestricted (which is why no ex-
plicit mode annotation appears on τ in ?τ ) and may not consume any linear variable
(rule edefe)—this is because a reference is non-strict and may be read multiple times.
The side condition Ξ � U in rule enewe ensures, as usual, that no linear variable from
the environment can be ignored at the leaves of a typing derivation.

Type names and linear kinds. In a manner similar to references, newα:κ in e intro-
duces a linear type name, which is locally bound as α in the environment (rule enewt).
This involves a more esoteric feature of LTG: α is classified as an undefined abstract
type by assigning it linear kind κL. Like a linear reference, a linear type name is ul-
timately consumed by defining it via def (rule edeft), and the environment splitting
rules allow separating it into a linear and an unrestricted copy implicitly. The type
system thereby ensures that all abstract types get defined, in a way almost entirely
analogous to references. That is, undefined type names are linear capabilities as well.
(This subsumes the use of effects for tracking type definitions in RTG.)

There is no explicit equivalent to “dereferencing” for a type name—a type name
can simply be used as a type, provided it has unrestricted kind. Within the scope of

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:41

its definition a type name is always unrestricted: in rule edeft, the ∆1 containing the
linear α is split off from Ξ, so that α must be unrestricted in Ξ.

As an example, consider the following term:

newα:type in
letm = def α:=int in ({f = λx:α.x, v = 77} : {f : α→ int, v : α})
in m.f ((λx:α.x) m.v)

It introduces the type name α, scoping over the rest of the expression. However, α’s
definition is only known inside the r.h.s. of the binding for the “module” m, thereby
effectively making α an ADT implemented by m. In the remainder of the term, α can
freely be used (as witnessed by the little identity function), but its definition is not
available. Hence, applying m.f to 33 would be ill-typed.

Note at this point that LTG only supports abstraction over plain types (with moded
kind), not over moded types. Consequently, the witnesses for existential introduction
and universal elimination are un-moded, and so are type constructor abstraction and
application. Abstraction over moded types would be a natural extension to LTG, but
we had no use for it in the context of MixML. (Arguably, that makes our linear kind
system rather degenerate.)

The use of linear kinds and types facilitates a more elegant account of Dreyer’s
“destination-passing style (DPS) universal” types than was possible in the original
RTG system. DPS universal types—which, as we shall see, are useful in modeling
separate compilation of recursive modules—have the form ∀α↑κ. τ1 → τ2; such a type
describes a function that takes as arguments an undefined abstract type name α and
a value of type τ1 (which may mention α), and returns a value of type τ2, while defin-
ing en passant the name α. In RTG, the parameterization over the type name α and
the value of type τ1 had to be hard-wired together, because it was necessary to ensure
that the function returned after instantiating α was called exactly once, but the type
system did not build in support for reasoning about linearity. Here, we can use linear
kinds and types to encode the DPS universal type ∀α↑κ. τ1 → τ2 as a composition of
the existing universal and arrow type constructors: ∀α:κL. (τU

1 → τU
2 )L. The linear kind

ascribed to α means that it is treated as a type name that must be defined, and the
linear mode on the arrow type ensures that the function defining α must be applied
exactly once by the program context.

Other terms. Given linear references, linearity is lifted to other types in standard
ways. For example, the type system ensures that a record of linear type {`1 : τU

1 , `2 : τ L
2 }L

will (eventually) be deconstructed by the program context, as will its linear `2 compo-
nent. The unrestricted `1 component, however, may be ignored by the context. In a
similar manner, a function of type (τ L

1 → τ L
2 )L must be applied exactly once; it will

consume its argument, and return a result value that must then be consumed by the
context.

Most of the rules for terms closely follow Ahmed et al. [2005]. As should be expected,
the central invariant is that a term is only well-formed under a given environment Ξ
if it consumes all linear variables (term and type variables in our case) bound in Ξ. In
particular, the variable rule has to require that all of the environment except for the
variable binding in question is unrestricted (rule evar).

Functions (rule efun) have to be linear whenever their body consumes a linear vari-
able from the environment: the side condition Ξ � ι ensures that ι = U only if Ξ is
unrestricted, and otherwise, the type system will ensure that the function gets applied
by the surrounding program context. Function application (rule eapp) involves two ex-
pressions. Therefore, the environment has to be split such that each linear capability
is given to either e1 or e2. An unusual aspect of our system is that splitting is also

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:42 A. Rossberg and D. Dreyer

used in the function rule, where we need a suitable (unrestricted) type environment ∆
under which the type annotation is well-formed (as described below).

Records require iterated splitting (rule erec). The side conditions τ̂i � ι ensure that
the record is considered linear (ι = L) if at least one of its components is linear; the
extra Ξ0 is needed to handle the empty case. To deconstruct a record, pattern matching
has to be used (rule eprj). Figure 12 defines the familiar dot notation for projection as
a derived form. However, this notation will only desugar to a well-typed term if all
unused components of the record are unrestricted.

The treatment of linear kinds in LTG’s type system is very similar to that of linear
types. The rules for polymorphic functions (egen and einst) and existential packages
(epack and eopen) hence mirror those of ordinary functions and records, except that
they involve (potentially linear) type expressions, not just term expressions. Accord-
ingly, they introduce and eliminate type variables of possibly linear kind.

Type well-formedness. The kinding judgment ∆ ` τ : κ̂ checks well-formedness of
types. Most rules are standard, except for the additional mode annotation. All but
rule tvar involve only unrestricted mode. Types of linear kind can only be introduced
and consumed on the term level—only new expressions, term-level type lambdas, and
unpacking for existentials can bind linear type variables. Consequently, the only pos-
sible types of linear kind are type variables. As with term variables, the variable rule
has to require that the remaining environment is unrestricted.

Perhaps surprisingly, our kinding rules do not employ splitting. Splitting is not nec-
essary because we can show that ∆ will always be unrestricted in any derivation except
one that only consists of the variable rule (cf. Lemma 7.2 below).

Environments. Figure 14 defines well-formed environments. For type and term
environments the rules are standard, except for the additional requirement that
types classifying term variables in Γ obviously need to have unrestricted kind typeU

(rule eecons).
An equivalence environment Ψ is only deemed well-formed if (1) all variables it de-

fines are bound in the type environment with unrestricted kind, (2) their definitions
are well-formed with unrestricted kind, and (3) no variable is defined twice (rule qe-
cons). It is deliberately not required that type definitions in Ψ are acyclic. Finally, a
combined environment Ξ = ∆; Ψ; Γ is well-formed if its individual components are.

Environment splitting. The definition of environment splitting implies that type
variables always have to be kept on both sides, even if they are linear (albeit with a
possible mode change). This is no real limitation, but yields the following useful prop-
erty about well-formed environments, which allows us to derive the well-formedness
of the environments used at the leaves of a derivation from those appearing at its root:

LEMMA 7.1 (ENVIRONMENT SPLITTING).

(1) Let ∆ = ∆1 ∗∆2. Then, ` ∆ if and only if ` ∆1 and ` ∆2.
(2) Let Γ = Γ1 ∗ Γ2. Then, ∆ ` Γ if and only if ∆ ` Γ1 and ∆ ` Γ2.
(3) Let Ξ = Ξ1 ∗ Ξ2. Then, ` Ξ if and only if ` Ξ1 and ` Ξ2.

In particular, the last part would not hold if we were to allow parts of the ∆ component
of either Ξ1 or Ξ2 to be dropped—the respective type variables might occur free in the
same side’s Γ.

We can show that most derivations with unrestricted mode on the right-hand side
require an unrestricted environment:

LEMMA 7.2 (UNRESTRICTED DERIVATIONS).

(1) If ∆ ` τ : κU, then ∆ � U.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:43

Type stores σ ::= ε | σ, α:?κ | σ, α:=τ :κ
Value stores s ::= ε | s, x:?τ | s, x:=e:τ
Configurations ξ ::= σ; s; e | •
Contexts E ::= [] | E e | v E | {`=v, `=E, `=e} | let {`=x}=E in e | def E:=e | !E

| E τ | 〈τ, E〉τ ′ | let 〈α, x〉=E in e

Reduction: ξ ↪→ ξ′

σ; s;E[(λx:τ̂ .e) v] ↪→ σ; s;E[e[v/x]]

σ; s;E[let {`=x}={`=v} in e] ↪→ σ; s;E[e[v/x]]
σ; s;E[(λα:κ̂.e) τ ] ↪→ σ; s;E[e[τ/α]]
σ; s;E[let 〈α, x〉=〈τ, v〉τ ′ in e] ↪→ σ; s;E[e[τ/α][v/x]]
σ; s;E[new τ ] ↪→ σ; s, x:?τ ;E[x]
σ; s1, x:?τ, s2;E[def x:=e] ↪→ σ; s1, x:=e:τ, s2;E[{}]
σ; s1, x:=e:τ, s2;E[!x] ↪→ σ; s1, x:=e:τ, s2;E[e]
σ; s1, x:?τ, s2;E[!x] ↪→ •
σ; s;E[newα:κ in e] ↪→ σ, α:?κ; s;E[e]
σ1, α:?κ, σ2; s;E[def α:=τ in e] ↪→ σ1, α:=τ :κ, σ2; s;E[e]

Config and Store Typing: ` ξ : τ ` σ : ∆; Ψ ∆; Ψ ` s : Γ ∆′ ` σ : ∆; Ψ Ξ ` s : Γ

` σ : ∆; Ψ ∆U!; Ψ ` s : Γ ∆; Ψ; Γ ` e : τU ε ` τ : typeU

` σ; s; e : τ

ε ` τ : typeU

` • : τ

` ∆U! ∆U! ` σ : ∆; Ψ

` σ : ∆; Ψ

∆ ` ΓU! ∆; Ψ; ΓU! ` s : Γ

∆; Ψ ` s : Γ

∆′ � U

∆′ ` ε : ε; ε

∆′ ` σ : ∆; Ψ

∆′ ` σ, α:?κ : ∆, α:κL; Ψ

∆′ ` σ : ∆; Ψ ∆′ ` τ : κU

∆′ ` σ, α:=τ :κ : ∆, α:κU; Ψ, α:=τ

Ξ � U

Ξ ` ε : ε

Ξ ` s : Γ ∆ ` τ : typeU

Ξ ∗∆ ` s, x:?τ : Γ, x:(?τ)L

Ξ1 ` s : Γ Ξ2 ` e : τU Ξ2 � U

Ξ1 ∗ Ξ2 ` s, x:=e:τ : Γ, x:(?τ)U

Context Typing: Ξ ` E : τ̂ ⇒ τ Ξ, x:τ̂ ` E[x] : τU

Ξ ` E : τ̂ ⇒ τ

Fig. 15. LTG Dynamic Semantics

(2) If Ξ ` v : τU, then Ξ � U.

Note that part (2) of the lemma only holds for values. In general, expressions may
involve eliminations of linear variables while still yielding an unrestricted result (for
example, consider f :({}U→{}U)L ` f {} : {}U). Fortunately, we only care about this
property for values (see below).

7.3. LTG Operational Semantics
Figure 15 gives the dynamic semantics of LTG. To avoid clutter, we implicitly assume
that x is fresh with respect to s whenever we write s, x:?τ in this figure, and likewise
for all similar extensions of stores or environments.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:44 A. Rossberg and D. Dreyer

Substitution Typing: ∆′ ` δ : ∆ Ψ′ ` δ : Ψ ∆′; Ψ′ ` δ : ∆; Ψ Ξ ` γ : Γ

∆′ � U

∆′ ∪∆ ` ε : ∆

∆′1 ` δ : ∆ ∆′2 ` τ : κ̂ α /∈ dom(δ)

∆′1 ∗∆′2 ` δ, α 7→τ : ∆, α:κ̂

Ψ′ ` δ : ε

Ψ′ ` δ : Ψ Ψ′ ` δ(α) ≡ δ(τ) α /∈ dom(Ψ)

Ψ′ ` δ : Ψ, α:=τ

∆′ ` δ : ∆ Ψ′ ` δ : Ψ

∆′; Ψ′ ` δ : ∆; Ψ

Ξ � U

Ξ ∪ Γ ` ε : Γ

Ξ1 ` γ : Γ Ξ2 ` v : τ̂ x /∈ dom(γ)

Ξ1 ∗ Ξ2 ` γ, x 7→v : Γ, x:τ̂

Substitution Splitting: γ1 ∗ γ2

γ1, x7→v ∗ γ2 = (γ1 ∗ γ2), x7→v if x /∈ dom(γ2)
γ1, x7→v ∗ γ2, x7→v = (γ1 ∗ γ2), x7→v

γ1 ∗ γ2 = γ2 ∗ γ1

Fig. 16. LTG Substitutions

Configurations and Reduction. Reduction is defined over configurations ξ, which
consist of an expression e to evaluate and a two-part store: the type store σ records
allocated type names and the value store s references. In either store, an allocated
variable can be in one of two states: undefined (α:?κ and x:?τ ) or defined (α:=τ :κ and
x:=e:τ ). Because references are non-strict, their definition in the value store can actu-
ally be an expression e instead of just a value. An exceptional configuration is the error
state • (black hole). It indicates the erroneous attempt to access an as-yet-undefined
reference.

The reduction rules define a mostly straightforward call-by-value semantics. The
only interesting operation is reading of references (!x), where we have two possible
cases: either x is defined, in which case we simply return its definition e, or x is unde-
fined, in which case !x incurs a runtime error, which we indicate by •.

Typing of Stores, Configurations, and Substitutions. Figure 15 also defines well-
formedness judgments for the various entities in the dynamic semantics (in particular,
stores and configurations), while Figure 16 gives the rules for substitutions. Typing of
stores is mostly straightforward, but has to take into account that both type and value
store can be recursive. The definition of each type or value in the respective store has
to be unrestricted and not use any linear resources.

A configuration is typed according to the type of its computation e under an environ-
ment derived from the store. A configuration is only well-formed if e has unrestricted
type, so that it cannot result in an unconsumed linear value. Moreover, if e already
is a value then Lemma 7.2 implies almost immediately that there are no undefined
variables left in the store.

Some typing rules make use of the “liberation” meta-operator ( )U!, defined in Fig-
ure 14, for making environments unrestricted. This operator merely provides a con-
venient (and deterministic) means of splitting off an unrestricted copy from a given
environment. More precisely, it satisfies the following property:

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:45

LEMMA 7.3 (LIBERATION).

(1) ∆ ∗∆U! = ∆.
(2) Γ ∗ ΓU! = Γ.

7.4. LTG Type Soundness
The structure of the type soundness proof is mostly standard, but requires extra work
in proving the substitution property, because of environment splitting. The central
lemmas and theorems are as follows.

The first two lemmas state frequently needed, standard structural properties:

LEMMA 7.4 (VARIABLE CONTAINMENT).

(1) If ∆ ` τ : κ̂, then fv(τ) ⊆ dom(∆).
(2) If Ξ ` e : τ̂ , then fv(e) ⊆ dom(Ξ).

LEMMA 7.5 (WEAKENING).

(1) If ∆1,∆2 ` τ : κ̂ and α /∈ dom(∆1,∆2), then ∆1, α:κU,∆2 ` τ : κ̂.
(2) If Ψ1,Ψ2 ` τ1 ≡ τ2 and α /∈ dom(Ψ1,Ψ2), then Ψ1, α:=τ,Ψ2 ` τ1 ≡ τ2.
(3) If Ξ1,Ξ2 ` e : τ̂ and α /∈ dom(∆ of Ξ1,Ξ2), then Ξ1, α:κU,Ξ2 ` e : τ̂ .
(4) If Ξ1,Ξ2 ` e : τ̂ and α /∈ dom(Ψ of Ξ1,Ξ2), then Ξ1, α:=τ,Ξ2 ` e : τ̂ .
(5) If Ξ1,Ξ2 ` e : τ̂ and x /∈ dom(Γ of Ξ1,Ξ2), then Ξ1, x:τU,Ξ2 ` e : τ̂ .

In the remaining statements we implicitly assume that all environments occurring
left of a precondition’s turnstile “`” are well-formed.

A key property in dealing with substitutions and linearity is the following. It states
that any substitution that can be assigned a split environment can itself be split into
two respective substitutions. It is a prerequisite for proving the substitution lemma
stated below. (Note how our definition of splitting for ∆, that always copies all vari-
ables, is essential for the first part.)

LEMMA 7.6 (SUBSTITUTION SPLITTING).

(1) If ∆′ ` δ : ∆1 ∗∆2, then ∆′ = ∆′1 ∗∆′2 with ∆′1 ` δ : ∆1 and ∆′2 ` δ : ∆2.
(2) If Ξ ` γ : Γ1 ∗ Γ2, then Ξ = Ξ1 ∗Ξ2 and γ = γ1 ∗ γ2 with Ξ1 ` γ1 : Γ1 and Ξ2 ` γ2 : Γ2.

PROOF. By induction on the derivation and inspection of the cases for the split. �

LEMMA 7.7 (SUBSTITUTION).

(1) If ∆ ` τ : κ̂ and ∆′ ` δ : ∆, then ∆′ ` δ(τ) : κ̂.
(2) If ∆ ` Γ and ∆′ ` δ : ∆, then ∆′ ` δ(Γ).
(3) If Ψ ` τ1 ≡ τ2 and Ψ′ ` δ : Ψ, then Ψ′ ` δ(τ1) ≡ δ(τ2).
(4) If ∆; Ψ; Γ ` e : τ̂ and ∆′; Ψ′ ` δ : ∆; Ψ, then ∆′; Ψ′; δ(Γ) ` δ(e) : δ(τ̂).
(5) If ∆; Ψ; Γ ` e : τ̂ and ∆′; Ψ; Γ′ ` γ : Γ with ∆′′ = ∆ ∗∆′, then ∆′′; Ψ; Γ′ ` γ(e) : τ̂ .

Note that in part (5) of the previous lemma ∆′′ = ∆ ∗ ∆′ is a precondition, i.e., the
lemma only holds if ∆ and ∆′ can be merged.

The following lemma is required for proving preservation. It allows us to break up
a well-typed term into a well-typed context and a well-typed subterm placed in this
context (and inversely, reassemble them).

LEMMA 7.8 (CONTEXT COMPOSITION). Suppose x /∈ fv(E).

(1) If and only if Ξ ` E[e] : τ̂ , then Ξ1, x:τ̂ ′ ` E[x] : τ̂ and Ξ2 ` e : τ̂ ′ with Ξ = Ξ1 ∗ Ξ2.
(2) If and only if Ξ ` E[e] : τU, then Ξ1 ` E : τ̂ ⇒ τ and Ξ2 ` e : τ̂ with Ξ = Ξ1 ∗ Ξ2.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:46 A. Rossberg and D. Dreyer

PROOF. The second part of this lemma is a simple corollary of the first, which is
proved by induction on the corresponding derivations. �

Since the LTG type system contains a conversion rule (econv), we also need the usual
generalized inversion lemma modulo type equivalence:

LEMMA 7.9 (INVERSION). Suppose Ξ ` e : τ ι.

(1) If e = x, then Ξ = Ξ1, x:(τ ′)ι,Ξ2 and Ψ of Ξ ` τ ≡ τ ′, with Ξ1,Ξ2 � U.
(2) If e = λx:τ ι11 .e2, then Ψ of Ξ ` τ ≡ τ ι11 → τ̂2 and Ξ = ∆1 ∗ Ξ2,

with ∆1 ` τ1 : typeU and Ξ2, x:τ ι11 ` e2 : τ̂2 and Ξ2 � ι.
(3) If e = e1 e2, then Ψ of Ξ ` τ ≡ τ ′ and Ξ = Ξ1 ∗ Ξ2,

with Ξ1 ` e1 : (τ̂2 → (τ ′)ι)ι1 and Ξ2 ` e2 : τ̂2.
(4) . . . similarly for all other constructs.

With these preparations in hand, we can prove the standard preservation property,
which is the first half of soundness:

THEOREM 7.10 (PRESERVATION). If ξ ↪→ ξ′ and ` ξ : τ , then ` ξ′ : τ .

PROOF. By the previous lemmas and analysis of the cases for ξ ↪→ ξ′. The proof also
relies on consistency of type equivalence, which we prove separately in Section 7.5. We
show only the first case, the others are proved in similar ways:

Case σ; s;E[(λx:τ ι.e) v] ↪→ σ; s;E[e[v/x]]:
— by inversion of config typing, ` σ : ∆; Ψ and ∆U!; Ψ ` s : Γ and Ξ0 ` E[(λx:τ ι.e) v] :
τU
0 for some Ξ0 = ∆; Ψ; Γ and ε ` τ0 : typeU

— by Lemma 7.8, Ξ′ ` E : τ ι11 ⇒ τ0 and Ξ ` (λx:τ ι.e) v : τ ι11 with Ξ0 = Ξ′ ∗ Ξ
— by Lemma 7.9, Ξ1 ` λx:τ ι.e : (τ ι22 → τ ′1

ι1)ι0 and Ξ2 ` v : τ ι22 , with Ξ = Ξ1 ∗ Ξ2 and
Ψ of Ξ ` τ1 ≡ τ ′1

— by Lemma 7.9, ∆11 ` τ : typeU and Ξ12, x:τ ι ` e : τ ι33 with Ξ1 = ∆11 ∗ Ξ12 and
Ψ of Ξ1 ` τ ι22 → τ ′1

ι1 ≡ τ ι → τ ι33
— by Lemma 7.2, ∆11 � U, and thus ∆11 ∗ Ξ12 = Ξ12, that is, Ξ1 = Ξ12

— by Consistency (Corollary 7.23), Ψ of Ξ1 ` τ2 ≡ τ and and ι2 = ι and Ψ of Ξ1 `
τ ′1 ≡ τ3 and ι1 = ι3

— by the definition of ∗, Ψ of Ξ1 = Ψ of Ξ = Ψ of Ξ2

— hence, Ψ of Ξ2 ` τ2 ≡ τ and Ψ of Ξ ` τ ′1 ≡ τ3, and by transitivity, Ψ of Ξ ` τ1 ≡ τ3
— by rule econv, Ξ2 ` v : τ ι

— thus, Ξ ` [v/x] : (Γ of Ξ), x:τ ι, and by Lemma 7.7, Ξ ` e[v/x] : τ ι33
— by rule econv, Ξ ` e[v/x] : τ ι11
— by Lemma 7.8, Ξ0 ` E[e[v/x]] : τU

0 , and by config typing, σ; s;E[e[v/x]] : τ0 �

To prove progress, the other half of soundness, we rely on the usual lemmas about
canonical values. However, we also need similar lemmas about the stores. In particular,
they tell us that in well-formed stores, a linear (term or type) variable is yet undefined,
while an unrestricted one is always defined.

LEMMA 7.11 (CANONICAL VALUES). Let ` ∆; Ψ; Γ and ∆U!; Ψ ` s : Γ, i.e., Γ is a
store typing. Assume ∆; Ψ; Γ ` v : τ ι.

(1) If Ψ ` τ ≡ τ̂1 → τ̂2, then v = λx:τ̂ ′1.e.
(2) If Ψ ` τ ≡ {` : τ̂}, then v = {`=v′}.
(3) If Ψ ` τ ≡ ∀α:κ̂.τ̂ , then v = λα:κ̂.e.
(4) If Ψ ` τ ≡ ∃α:κ̂.τ̂ , then v = 〈τ1, v′〉∃α:κ̂.τ̂ ′ .

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:47

(5) If Ψ ` τ ≡ ?τ1, then v = x.

PROOF. By induction on the typing derivation for v. The case analysis again relies
on consistency of type equivalence, which we discuss in Section 7.5 below. �

LEMMA 7.12 (CANONICAL VALUE STORES). Let ∆; Ψ ` s : Γ and Γ = Γ1, x:τ ι,Γ2.

(1) If ι = L , then s = s1, x:?τ ′, s2.
(2) If ι = U , then s = s1, x:=e:τ ′, s2.

LEMMA 7.13 (CANONICAL TYPE STORES). Let ` σ : ∆; Ψ and ∆ = ∆1, α:κι,∆2.

(1) If ι = L , then σ = σ1, α:?κ′, σ2.
(2) If ι = U , then σ = σ1, α:=τ :κ′, σ2.

PROOF. (Both previous lemmas) By induction on the respective derivation. �

We now have the relevant ingredients for proving progress. Besides the usual prop-
erty, the theorem also says that whenever a configuration ξ is terminal, it contains only
defined variables in the stores. That is the core soundness property for linear modes.

THEOREM 7.14 (PROGRESS).
Let ` ξ : τ ′ and ξ 6= •. Then either ξ = (α:=τ :κ;x:=e:τ ; v), or ξ ↪→ ξ′.

PROOF. By inversion, ` σ : ∆; Ψ and ∆U!; Ψ ` s : Γ and ∆; Ψ; Γ ` e : τU, where
ξ = σ; s; e. If e is a value, then the conclusion follows easily from Lemma 7.2 and
iterating the previous two lemmas. Otherwise, weaken the typing assumption on e to
Ξ1 ` e′ : τ̂ with e = E[e′] and ∆; Ψ; Γ = Ξ1 ∗ Ξ2. The result follows by induction on the
typing derivation, generalizing E, e′, τ̂ , Ξ1, and Ξ2. �

Finally, we have the following property, which states that instead of applying a type
substitution to a derivation, we can also turn the substitution into an explicit type
equivalence environment. This property is not needed to show soundness of the calcu-
lus, but we will need it later to prove correctness of the MixML elaboration.

LEMMA 7.15 (SUBSTITUTION REVERSAL). Let ∆; Ψ ` δ : ∆′; Ψ′ with dom(δ) ⊆
dom(∆′) ∪ dom(Ψ′) and ∆ = ∆′ − dom(δ) and Ψ = Ψ′ − dom(δ).

(1) Ψ′ ` τ ≡ δτ .
(2) If Ψ ` δτ1 ≡ δτ2, then Ψ′ ` τ1 ≡ τ2.
(3) If ∆ ` δτ : κ̂, then ∆′ ` τ : κ̂.
(4) If ∆; Ψ; δΓ ` δe : δτ̂ , then ∆′; Ψ′; Γ ` e : τ̂ .

PROOF. The first part is by easy induction on the structure of τ . The second part
is by induction on the derivation, where we first distinguish the cases τ1 ∈ dom(δ)
and τ1 /∈ dom(δ), and directly use Part (1) and transitivity of type equivalence in the
former. The remaining parts then follow easily. �

7.5. Consistency of Type Equivalence
Consistency of type equivalence is an essential property: it ensures that no two types
formed from different base type constructors (e.g., ∀ and→) can ever be deemed equiva-
lent by the type system, and moreover that whenever two base types of the same shape
are equivalent (e.g., τ1 → τ2 ≡ τ ′1 → τ ′2), their constituent types are correspondingly
equivalent as well (e.g., τ1 ≡ τ ′1 and τ2 ≡ τ ′2). In particular, this property is necessary to

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:48 A. Rossberg and D. Dreyer

Type paths ρ ::= α | ρ τ | ∀α:κ̂.τ̂ (α 6∈ dom(Ψ))

Logical Approximation of Types: ` τ1 4n τ2 : κ

` τ1 ≡ τ2 : κ′ → κ′′ ∀τ ′1, τ ′2, j ≤ n. (` τ ′1 4j τ ′2 : κ′) =⇒ (` τ1 τ ′1 4j τ2 τ ′2 : κ′′)

` τ1 4n τ2 : κ′ → κ′′

` τ1 ≡ τ2 : type ∀j ≤ n. (` τ1
hd−→ j ρ1) =⇒ (` τ2

hd−→∗ ρ2 ∧ ` ρ1 ↔ ρ2 : type)

` τ1 4n τ2 : type

Path Equivalence: ` ρ1 ↔ ρ2 : κ

α 6∈ dom(Ψ)

` α↔ α : κα

` ρ1 ↔ ρ2 : κ′ → κ ` τ1 ≡ τ2
` ρ1 τ1 ↔ ρ2 τ2 : κ

` τ1 ≡ τ2
` ∀α:κ̂.τ ι1 ↔ ∀α:κ̂.τ ι2 : type

Head Reduction: ` τ1
hd−→ τ2

α ∈ dom(Ψ)

` α hd−→ Ψ(α) ` (λα.τ) τ ′
hd−→ τ [τ ′/α]

` τ1
hd−→ τ ′1

` τ1 τ2
hd−→ τ ′1 τ2

Logical Approximation of Substitutions: ` δ1 4n δ2

α = dom(δ1) = dom(δ2) # dom(Ψ) ∪ fv(Ψ) ∀α ∈ α. ` δ1α 4n δ2α : κα

` δ1 4n δ2

Fig. 17. Logical Relations for Proving LTG Consistency

prove Preservation (Theorem 7.10 in the previous section) and the Canonical Values
lemma (Lemma 7.11) in the presence of a type conversion rule like econv.

Typically, consistency is established either by proving a normalization theorem or
by exhibiting a direct algorithm for deciding type equivalence, from which it falls out
as a simple corollary [Stone and Harper 2006]. In the case of LTG’s type system, how-
ever, neither option applies because of the potential for cyclic type definitions in our
Ψ context; at least we do not know of any algorithm for deciding type equivalence or
normalizing types in LTG.

Fortunately, we can instead prove consistency directly, using a logical-relations ar-
gument that is quite similar to those commonly used for proving the correctness of
normalization and equivalence-checking routines. The key idea is (1) to define a no-
tion of head reduction, in the standard way but augmented with the reduction of type
variables in Ψ to their definitions, and (2) to show that, if two types τ1 and τ2 (of base
kind type) are equivalent, and if τ1 head-normalizes, then τ2 does as well, and to a type
with the same head constructor (e.g.,→, ∀) as τ1. It may be that neither τ1 nor τ2 head-
normalizes, but this is fine since our goal is to prove consistency, not normalization.

In order to account for the possibility of head reduction diverging, we employ a step-
indexed logical relation [Appel and McAllester 2001; Ahmed 2006]. Our use of step-
indexing is a bit degenerate in the sense that the step-index is not used to make the
definition well-founded but merely in order to facilitate a form of coinductive reasoning

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:49

in the proof that the logical relation is reflexive (Lemma 7.20 below). This is to our
knowledge a novel application of step-indexing, but a fairly natural one, and the proof
follows closely in the style of Ahmed [2006]. Crucially, we rely on her non-standard
formulation of the transitivity property of the logical relation (Lemma 7.21 below).

Before sketching the proof, let us mention a few salient points of hygiene:

(1) We assume at the outset of the proof that we are given an equivalence environment
Ψ that is well-formed. This Ψ is constant throughout the proof, so we do not bother
to mention it explicitly everywhere.

(2) We assume (as before) that type variables are sorted according to their kind, and
write κα to denote the implicit kind of α.

(3) We assume implicitly that all types we work with are well-kinded in some suitable
∆, and often omit the kind κ from the judgments in Figure 17 since it can always
be inferred (given hygienic point 2).

(4) For brevity, we show here the relevant rules for only one of the base type construc-
tors (∀α:κ̂.τ ι); the others are similar.

Figure 17 displays the definition of the logical relation employed in our proof. The
main judgment, ` τ1 4n τ2 : κ, defines a logical approximation relation on types, which
is by definition included in the definitional type equivalence judgment ` τ1 ≡ τ2 : κ.
(We write ` τ1 ≡ τ2 : κ here to denote that, in addition to being equivalent, τ1 and
τ2 have kind κ.) It is defined inductively on the kind κ. Type constructors of arrow
kind are logically related if they map logically related arguments to logically related
results; we quantify over a smaller step-index j in order to ensure downward-closure
of the logical relation (Lemma 7.17 below). For type constructors τ1 and τ2 of base
kind type, we say that τ1 logically approximates τ2 for n steps if, whenever τ1 head-
normalizes in n or fewer steps to a path (i.e., head-normal form) ρ1, it is also true that
τ2 head-normalizes to a path ρ2, and furthermore ρ1 and ρ2 are equivalent according to
the path equivalence judgment ` ρ1 ↔ ρ2 : κ, which compares the paths structurally.

We will show that definitional equivalence implies logical approximation at any step
index. That, together with the fact that base types are by definition in head-normal
form, gives us consistency.

LEMMA 7.16 (SOUNDNESS OF PATH EQUIVALENCE AND HEAD REDUCTION).

(1) If ` ρ1 ↔ ρ2 : κ, then ` ρ1 ≡ ρ2.
(2) If ` τ1

hd−→∗ τ2, then ` τ1 ≡ τ2.

PROOF. By straightforward induction on the derivation of the premise. �

LEMMA 7.17 (DOWNWARD CLOSURE OF THE LOGICAL RELATION).
If ` τ1 4n τ2 : κ and j ≤ n, then ` τ1 4j τ2 : κ.

LEMMA 7.18 (CLOSURE UNDER HEAD EXPANSION).

(1) If ` τ ′1 4n τ ′2 : κ and ` τ1
hd−→∗ τ ′1 and ` τ2

hd−→∗ τ ′2, then ` τ1 4n τ2 : κ.
(2) If ` τ ′1 4n τ2 : κ and ` τ1

hd−→ j τ ′1, then ` τ1 4n+j τ2 : κ.
(3) If ` τ1 ≡ τ2 : κ and ` τ1

hd−→ j τ ′1, then ∀n < j. ` τ1 4n τ2 : κ.

PROOF. By straightforward induction on κ. We show the most interesting case:

(2) — Case: κ = κ′ → κ′′. Suppose ` τ ′′1 4k τ ′′2 : κ′, where k ≤ n + j. By definition,
` τ1τ ′′1

hd−→ j τ ′1τ
′′
1 . It remains to show ` τ1τ ′′1 4k τ2τ ′′2 : κ′′.

— Let m = min(k, n).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:50 A. Rossberg and D. Dreyer

— By Lemma 7.17 and the assumption, we have ` τ ′1τ ′′1 4m τ2τ
′′
2 : κ′′.

— By induction, ` τ1τ ′′1 4m+j τ2τ
′′
2 : κ′′.

— By Lemma 7.17, since k ≤ m+ j, we have ` τ1τ ′′1 4k τ2τ ′′2 : κ′′.
Note that the proof of (3) is trivial since n is strictly less than j (so the reduction of
τ1 causes the step-index “clock” to run out and we don’t have anything to show). �

LEMMA 7.19 (“MAIN” LEMMA: ↔ ⊆ 4 ⊆ ≡).

(1) If ` τ1 4n τ2 : κ, then ` τ1 ≡ τ2.
(2) If ` ρ1 ↔ ρ2 : κ, then ∀n. ` ρ1 4n ρ2 : κ.
(3) If ` δ1 4n δ2 and ` τ1 ≡ τ2, then ` δ1τ1 ≡ δ2τ2.
(4) If α # dom(Ψ) ∪ fv(Ψ), then ∀n. ` {α 7→α} 4n {α 7→α}.

PROOF.

(1) Immediate, by definition.
(2) By Lemma 7.16, we have ` ρ1 ≡ ρ2 : κ. Then, by induction on κ:

— Case: κ = type. Immediate.
— Case: κ = κ′ → κ′′.

— Suppose ` τ ′1 4k τ ′2 : κ′ for k ≤ n.
— By part (1), ` τ ′1 ≡ τ ′2.
— By the assumption, ` ρ1 τ ′1 ↔ ρ2 τ

′
2 : κ′′.

— By induction, ` ρ1 τ ′1 4k ρ2 τ ′2 : κ′′.
(3) By part (1), this reduces to a standard “functionality” property, which is straight-

forward to prove by induction on the derivation of ` τ1 ≡ τ2.
(4) Straightforward, by part (2). �

The next lemma is the one in which step-indices play a crucial role.

LEMMA 7.20 (REFLEXIVITY OF THE LOGICAL RELATION).

(1) If ` τ : κ and ` δ1 4n δ2, then ` δ1τ 4n δ2τ : κ.
(2) If ` τ : κ, then ∀n. ` τ 4n τ : κ.

PROOF.

(1) By induction first on n and second on τ . All cases are straightforward, using the
above lemmas (standard logical-relations proof). The only interesting cases are the
ones for variables α:
— Case: τ = α, where α 6∈ dom(Ψ).

— If α ∈ dom(δ1), then the result follows from the second assumption.
— Else, the result follows from part (2) of Lemma 7.19, choosing ρ1 = ρ2 = α.

— Case: τ = α, where α := τ ′ ∈ Ψ and ` τ ′ : κ (by our implicit assumption on Ψ).
— By the second assumption, δ1τ = δ2τ = α and δ1τ ′ = δ2τ

′ = τ ′ and ` α hd−→ τ ′.
— If n = 0, then by part (3) of Lemma 7.18, we have ` α 40 α : κ.
— If n > 0, then by induction, ` τ ′ 4n−1 τ ′ : κ, and by Lemma 7.18, ` α 4n α : κ.

(2) Immediate, from part (1), picking δ1 and δ2 to be the empty substitution. �

Our statement and proof of the transitivity of the logical relation follow Ahmed
[2006]. The reason that the theorem is stated in a somewhat odd way is that tran-
sitivity of logical approximation does not hold for a fixed n—it only holds if the second
pair of types (τ2 and τ3 below) are logically related at all step indices. Intuitively, this
is because the logical-relatedness of τ1 and τ2 for n steps yields no information about
how many steps τ2 may take to head-normalize. Furthermore, like Ahmed’s proof, ours

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:51

makes critical use of the fact that we have (implicitly) built our logical relation over
syntactically well-kinded types. This is the essential technical device that she used (as
do we) in order to invoke the reflexivity lemma at a key point in the proof. For more
context, we refer the interested reader to her paper.

LEMMA 7.21 (TRANSITIVITY OF THE LOGICAL RELATION).

(1) If ` ρ1 ↔ ρ2 : κ and ` ρ2 ↔ ρ3 : κ, then ` ρ1 ↔ ρ3 : κ.
(2) If ` τ1 4n τ2 : κ and ∀k. ` τ2 4k τ3 : κ, then ` τ1 4n τ3 : κ.

PROOF.

(1) By straightforward induction on the structure of ρ1.
(2) By induction on κ. Clearly, ` τ1 ≡ τ3 : κ by transitivity of ≡.

— Case: κ = type. Suppose j1 ≤ n and ` τ1
hd−→ j1 ρ1.

— By the first assumption, ∃j2. ` τ2
hd−→ j2 ρ2 and ` ρ1 ↔ ρ2 : type.

— By the second assumption (thanks to the universal quantification over k,
which we instantiate with j2), ` τ3

hd−→∗ ρ3 and ` ρ2 ↔ ρ3 : type.
— By part (1), ` ρ1 ↔ ρ3 : type.

— Case: κ = κ′ → κ′′. Suppose j ≤ n and ` τ ′1 4j τ ′2 : κ′.
— By the first assumption, ` τ1τ ′1 4j τ2τ ′2 : κ′′.
— By Lemma 7.20, ∀k. ` τ ′2 4k τ ′2 : κ′.
— By the second assumption, ∀k. ` τ2τ ′2 4k τ3τ ′2 : κ′′.
— By induction, ` τ1τ ′1 4j τ3τ ′2 : κ′′. �

THEOREM 7.22 (FUNDAMENTAL THEOREM OF LOGICAL RELATIONS).

(1) If ` τ1 ≡ τ2 : κ and ` δ1 4n δ2, then ` δ1τ1 4n δ2τ2 : κ and ` δ1τ2 4n δ2τ1 : κ.
(2) If ` τ1 ≡ τ2 : κ, then ∀n. ` τ1 4n τ2 : κ.

PROOF.

(1) By induction on the derivation of the first assumption. The proofs for all structural
equivalence rules are analogous to the proofs for the corresponding formation rules
in Lemma 7.20. The proofs for the reduction rules (qdelta, qbeta, and qeta) follow
easily from Lemmas 7.18 and 7.20. The proof of symmetry follows directly from the
generalized statement of the theorem (i.e., the fact that we prove both δ1τ1 4n δ2τ2
and δ1τ2 4n δ2τ1 simultaneously). The interesting case is the one for transitivity:
— Case: ` τ1 ≡ τ2 : κ and ` τ2 ≡ τ3 : κ, and we must show ` δ1τ1 4n δ2τ3 : κ and
` δ1τ3 4n δ2τ1 : κ. We show the former; the proof of the latter is symmetric.
— By induction, ` δ1τ1 4n δ2τ2 : κ.
— By Lemma 7.20, ∀k. ` δ2 4k δ2.
— By induction, ∀k. ` δ2τ2 4k δ2τ3 : κ.
— By Lemma 7.21, ` δ1τ1 4n δ2τ3 : κ.

(2) Immediate, from part (1), picking δ1 and δ2 to be the empty substitution. �

COROLLARY 7.23 (CONSISTENCY). Suppose Ψ ` ρ1 ≡ ρ2.

(1) If ρ1 = ∀α:κ̂.τ ι1, then Ψ ` ρ2
hd−→∗ ∀α:κ̂.τ ι2, where Ψ ` τ1 ≡ τ2.

(2) . . . similarly for the other base type constructors (→, {` : }, ∃, ?).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:52 A. Rossberg and D. Dreyer

8. EVIDENCE TRANSLATION AND SOUNDNESS
We define the dynamic semantics of MixML by translation into the internal language
LTG as defined in the previous section. The translation employs a backpatching se-
mantics, using reference cells to enable recursive linking for dynamic module compo-
nents. Thus, a module mod of signature Σ translates to a function—the module ini-
tializer—whose argument has the same shape as Σ but with uninitialized references
corresponding to the exports of Σ (the imports may or may not be initialized). When
called, this function will patch in definitions for those exports. In so doing, the func-
tion may attempt to dereference any component of the argument (import or export),
which may in turn result in a run-time error if that component has not yet been back-
patched. This approach enables a translation of recursive linking that avoids the need
for a complex fixed-point operation. At the same time, the linear typing of LTG ensures
that every module component actually gets defined (in a complete module).

The translation is given by the rules in Figures 18-21. The structure of these rules is
identical to that of the typing rules from Section 4, except that each judgment produces
an LTG term as additional output.

For notational convenience, we omit kind annotations from type variables in LTG
terms. As before, we write κα for the implicit kind of α. In binders, we mean αι to be
short-hand for α:κια. Moreover, we identify internal and external language kinds, that
is, we assume that syntactic kinds knd and “semantic kinds” κ range over the same
phrases, and we use them interchangeably.

Assumptions about the core language. In order to be able to translate atomic mod-
ules, we assume that the core language judgments introduced at the end of Section 4.1
can be extended to translation judgments producing well-formed LTG terms. Further,
we assume that these judgments can be proven sound and complete in conjunction with
the module judgments (the proofs are interdependent because the grammars are). The
details of the required properties are given with the respective Theorems 8.1 and 8.7,
and Lemmas 8.4 and 8.5 in Section 8.3 below.

8.1. Erasure
Figure 18 defines an erasure ( )◦ from MixML semantic signatures (cf. Figure 4) into
LTG types. The erasure of the semantic signatures derived by the MixML typing rules
corresponds to the LTG terms that are produced by the translation, i.e., the derived
terms serve as evidence for the derived types.

A unit of signature ∀α.∃β. (L; Σ) is represented by a polymorphic initializer function
of type ∀Uα.∀Lβ.(Σ◦ → {}), which is in destination-passing style [Dreyer 2007a]. That
is, the function takes import types α, as-yet-undefined export type names β (with linear
kind), and the representation of the complete module as a value of type Σ◦ with all
dynamic content represented by references, and where the export components are yet
uninitialized (and thus linear). The function defines the export types and fills in the
dynamic content of the export terms. Recall that the the notation ∀ια.τ used here was
defined in Figure 12; it implies that the inner (Σ◦ → {}) has to be linear if and only if
β is not empty.

Dynamic atomic modules—i.e., values and higher-order units—are therefore repre-
sented as lazy references (?τ)ι. A reference has linear mode if it corresponds to an
export (because the respective initializer is expected to define it), and unrestricted
mode if it corresponds to an import.

A structure {|` : Σ|} is represented as an LTG record {` : Σ◦}ι, being linear if at least
one of its components is.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:53

[[= A]]◦
def
= (∀αU.(αA◦ → αA◦)U)U

([[A]]+/−)◦
def
= (?A◦)L/U

([[Φ]]+/−)◦
def
= (?Φ◦)L/U

{|` : Σ|}◦ def
= {` : Σ◦}U (if Σ◦ � U)

{|` : Σ|}◦ def
= {` : Σ◦}L (otherwise)

(∀α.∃β. (L; Σ))◦
def
= ∀Uα.∀Lβ. (Σ◦→{}U)

〈[|Φ|]〉◦ def
= Φ◦

ε◦
def
= ε

(Γ,X : Σ)◦
def
= Γ◦,X : Σ−◦

ε◦
def
= ε

(δ, α 7→ A)◦
def
= δ◦, α 7→ A◦

Σ−◦
def
= (−|Σ|)◦

Create([[= A]])
def
= λαU. λx:(αA◦)U. x

Create([[A]]+)
def
= newA◦

Create([[Φ]]+)
def
= newΦ◦

Create({|` : Σ|}) def
= {`= Create(Σ)}

Copy(e1, e2 : [[= A]])
def
= {}

Copy(e1, e2 : [[A]]+/−)
def
= def e2/1 := ! e1/2

Copy(e1, e2 : [[Φ]]+/−)
def
= def e2/1 := ! e1/2

Copy(e1, e2 : {|` : Σ|}) def
= let{`=x1}= e1 in

let{`=x2}= e2 in

Copy(x1, x2 : Σ)
Fig. 18. Auxiliary Definitions for Evidence Translation

Following Rossberg et al. [2010], atomic type components [[= A]] are represented by
higher-kinded polymorphic functions ∀α.αA◦ → αA◦, where κα = κA → type. This is
merely a coding trick: the computational content of values of this type is not actually
relevant, we only care that it exists and that it uniquely determines the type A.

The erasure A◦ of core types and constructors simply decorates all constituent types
with mode U and erases all contained package types into LTG universal types, accord-
ing to the definition given in Figure 18.

Note the little subtlety that module signatures Σ erase to moded types τ ι, while unit
signatures Φ and core types A erase to plain types τ . This is because the latter two
typically appear in syntactic contexts where the mode is determined separately, or is
not present at all (e.g., for the content type of a reference).

To relate derivations for our external language MixML to derivations in our internal
language LTG, erasure is extended to module environments Γ in a pointwise fashion8—
however, all types are made unrestricted in the environment (notation Σ−◦). That is
because the free module variables of an initializer are different in nature from its
arguments: the latter are to be defined by the initializer, but the former are merely
intended to be read.

Example. Consider the following example of a simple module expression that defines
a unit importing type t and term v, and exporting the types u and s—with the latter
being abstract—along with the term w:


t = [:type],
u = [t× t],
s = [:type] seals [t× t],
v = [:t],
w = [(v, v)]




8We use Γ to range over external language module environments as well as internal language term envi-
ronments, but it should always be clear from context which is meant. Likewise for type substitutions δ.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:54 A. Rossberg and D. Dreyer

The semantic signature of this unit, as derived by the typing rules, is

∀α.∃β.

{t : [[=α]]};


t : [[=α]],
u : [[=α× α]],
s : [[=β]],
v : [[α]]−,
w : [[α× α]]+




Erasure of this signature yields the following polymorphic function type, where export
types and terms turn into linear “destination” arguments:

∀αU.∀βL.



t : [[=α]]◦,
u : [[=α× α]]◦,
s : [[=β]]◦,
v : (?α)U,
w : (?(α× α))L


L → {}U

 L

A possible evidence term for this unit is the following:

λαU. λβL. λx :


t : [[=α]]◦,
u : [[=α× α]]◦,
s : [[=β]]◦,
v : (?α)U,
w : (?(α× α))L


L. def β := α× α in {}; def x.w := (!x.v, !x.v)

It takes import type α and (linear) export type name β, as well as the argument x
carrying the module to initialize, and initializes its exports by defining the type name
β and the reference at x.w. (Because s has no other components besides the sealed type,
the body of the corresponding def for β is empty.)

The actual translation rules have to be formulated in a compositional manner, hence
they will actually produce a somewhat more complicated term for the example unit,
but it will be operationally equivalent to the one just shown.

8.2. Translation rules
Given the ideas just described, most of the evidence translation is rather straightfor-
ward.

Modules and Units. The main judgment for translating modules (Figure 19) yields
an LTG function e that is an initializer for a module of type Σ◦. It takes a value x
of type Σ◦ as a partial representation of the module, and defines all linear references
it contains, thereby initializing its term exports. It will also define all exported type
names. (To avoid clutter, we omit duplicating the type annotation on all initializer
arguments x in the evidence terms. We also omit the type annotations τ̂ for expressions
def α:=τ in (e : τ̂), since it is just {}U in all places of our translation.)

Being in destination-passing style, initializers are seemingly “backward” with re-
spect to the modules they define. That is, wherever the typing rules produce a smaller
module from larger operands (e.g., for projection or opaque linking), the translation
must create larger modules to pass to the respective operand initializers.

The main points of interest are thus the following. Rule UNIT
;

closes an initial-
izer over all its type arguments, producing a stand-alone unit initializer. Conversely,
rule NEW

;

applies this function to initialize a unit (dereferencing the cell it is taken
from first). In an analogous manner, rule UNPACK

;

handles unpacking of units that
have been packaged as first-class values. Rule COMPL

;

implements a complete, ini-
tialized module by first creating a fresh, uninitialized module (with the help of the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:55

meta-function Create( ) defined in Figure 18) along with fresh export type names, and
then invoking the initializer expression e.

New modules also have to be created in rule DOT
;

for projection and rule SEAL
;

for
opaque linking, which are the two constructs that mask parts of a larger module—the
evidence expression thus must inversely create the skeletons for these larger modules.
Specifically, the latter rule must locally create the combined module comprising both
mod1 and mod2, and then copy out the restricted export to the destination. Moreover,
it defines the abstract types α1 that are introduced by the opaque linking. Notably,
the evidence terms for this rule and rule LINK

;

let-bind X1 in the scope of e2, in order
to mirror the environment extension in the premises. (The terms also bind further
variables, such as X2, which we assume to be fresh and hence non-capturing.)

Copying is defined in Figure 18 by induction on the annotated semantic signature
Σ. Its definition is bidirectional: given two module representations with opposite im-
port/export polarities, it generates code for copying every import slot from one of the
modules to the respective export slot of the other, and vice versa. In the main judg-
ment, all uses of copying are unidirectional (left to right), since the respective Σ’s are
all absolute, but bidirectional copying is in fact used in the translation of unit signature
matching (rule MATCH

;

below). Note: it is important in both rules SEAL
;

and MATCH
;

that the copying operation merely links components together and does not actually
dereference any right away, since the evidence for those rules only defines the com-
ponents in question after the copying is performed. This behavior is guaranteed by
the semantics of def e1/2 := ! e2/1, which delays the computation of ! e2/1 until e1/2 is
accessed.

Merging. The translation of transparent and opaque linking relies on evidence for
signature merging: the merging rules (Figure 21) produce evidence functions f1 and
f2 for projecting each of the operand modules back out of the linked result—again
in accordance with the backward nature of destination passing. These submodules
are then used in the linking rules to initialize the operands of linking. (For the rules
regarding structures, recall the various abbreviations for manipulating LTG records
that we defined in Figure 12.)

The only interesting bits in the translation of merging itself is the treatment of dy-
namic components. Because we allow linking to create subtypes, it is necessary to in-
sert a coercion function to go back from the subtype to the supertype in the less specific
operand. This is done by creating an auxiliary reference that applies the coercion func-
tion obtained as evidence of the respective subtyping judgment. In the case of units,
the coercion function is created as evidence of the signature matching rule MATCH

;

.
As in the case of copying, it is vital for this translation that references are non-

strict (Section 7.1): coercions have to be applied lazily, so that they do not request a
recursive definition prematurely. Consider the following (contrived) example, where
sqrt : float→ float, but we take int to be a (coercive) subtype of float:

(X1 = {a= [:float]}) with {a= [2], b= [sqrtX1.a]}
The signature of this module is {|a : [[int]]+, b : [[float]]+|}, because int ≤ float. The ev-
idence translation will produce the moral equivalent (modulo a number of simplifica-
tions) of the following initializer term, assuming f is the coercion function witnessing
int ≤ float in the core language:

λx : {a : (?int)L, b : (?float)L}L.
letX1 = letx1 = {a = new(float)} in def x1.a := f (!x.a);x1 in
letX2 = x in
letxa = 2 in def X2.a := xa;
letxb = sqrt (!X1.a) in def X2.b := xb

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:56 A. Rossberg and D. Dreyer

If the expression f(!x.a) were evaluated eagerly in the assignment, reading x.a would
result in a runtime error because it would yet be undefined at that point. But once x.a
has been initialized, which happens before ! X1.a is evaluated, it is safe to read it.

To circumvent laziness where it is not wanted, our translation puts the actual ex-
pressions defining the components x.a and x.b into let-bindings before their respec-
tive def-expressions in rule EVAL

;

. This way, they are still evaluated strictly, and ul-
timately, all initialization is entirely sequential, as expected. In other words, our use
of non-strictness is benign and not externally observable. (For the other place defining
a reference, rule EUN

;

, strictness does not matter, since e is the translation of a unit,
which always is a lambda.)

Unit Signature Matching. The evidence of unit signature matching is a higher-order
function taking a unit initializer y of the smaller type and delivering one of the larger
(rule MATCH

;

, Figure 21). To do so, the resulting function creates evidence for an aux-
iliary module x of signature |Σ|, which makes the connection between the “smaller”
module signature Σ1 and the “larger” Σ2. It also creates a fresh set of export types β1
for the original unit initializer y and defines its own exports β2 using the type substi-
tution δ derived by the typing rule. In a similar manner, substituted import types α1

are passed to y.
The most subtle feature about this part of the translation is the use of the Copy

meta-operator to wire the exports from the projected module f2 x, which represents
−δΣ2, back to the destination x2 of the constructed unit function—and vice versa the
imports. Since this wiring is bidirectional—i.e., depends on the variance of the indi-
vidual components—the definition of Copy (Figure 18) is such that the assignment is
done in the appropriate direction for each component, depending on its variance.

8.3. Soundness and Completeness of Evidence Translation
In order to prove that our evidence translation yields a sound operational semantics
for MixML, we need to show that the translation is sound with respect to LTG’s typing
rules, and complete with respect to the MixML typing rules.

First, for every module deemed well-typed by the MixML typing rules there is a
suitable translation—and vice versa, i.e., every module we can translate is well-typed.
Since the translation rules just decorate the typing rules, without introducing addi-
tional constraints, the proof for both directions is trivial:

THEOREM 8.1 (COMPLETENESS OF TRANSLATION).

(1) If and only if Γ ` exp : A, then Γ ` exp : A ; e.
(2) If and only if Γ;R;β ` mod : Σ, then Γ;R;β ` mod : Σ ; e.
(3) If and only if Γ ` mod : Σ, then Γ ` mod : Σ ; e.
(4) If and only if Γ ` mod : Φ, then Γ ` mod : Φ ; e.
(5) If and only if ` Σ1 + Σ2 ⇒ Σ, then ` Σ1 + Σ2 ⇒ Σ ; f1/f2.
(6) If and only if ` A1 ≤ A2, then ` A1 ≤ A2 ; f .
(7) If and only if ` Φ1 ≤ Φ2, then ` Φ1 ≤ Φ2 ; f .

PROOF. Both directions by straightforward induction on the derivation. The
arguments for properties 1 and 6 clearly depend on the core language. We assume
them to be provable for any additional constructs not present in our grammar. �

Before we can proceed to show that the LTG terms produced by the translation are
actually well-formed, we need to make precise what we mean by “well-formed”. We
start by defining when a judgment is well-formed relative to a given LTG type eviron-
ment ∆:

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:57

Modules: Γ;R;β ` mod : Σ ; e

X : |Σ| ∈ Γ

Γ; {||}; ∅ ` X : |Σ|; λx.Copy(X, x : |Σ|) (VAR
;

)
Γ; {||}; ∅ ` {} : {||}; λx.{} (EMP

;

)

` A ⇑ knd

Γ; [[= A]]; ∅ ` [:knd] : [[= A]] ; λx.{} (ITYP
;

)
Γ ` typ ; A

Γ; {||}; ∅ ` [typ] : [[= A]] ; λx.{} (ETYP
;

)

Γ ` typ ; A ` A ⇑ type
Γ; {||}; ∅ ` [:typ] : [[A]]− ; λx.{}

(IVAL
;

)
Γ ` exp : A ; e

Γ; {||}; ∅ ` [exp] : [[A]]+ ; λx. letx′=e in
def x:=x′

(EVAL
;

)

Γ;R;β ` mod : Σ ; e

Γ; {|` :R|};β ` {`=mod} : {|` : Σ|}; λx. let {`=x′}=x in e x′
(STR

;

)

Γ; {|` :R|};β ` mod : {|` : Σ, `′ : |Σ′||}; e

Γ;R;β ` mod .` : Σ ; λx. let {`′=x′}= Create({`′:|Σ′|}) in e {`=x, `′=x′}
(DOT

;

)

` L1 locates α1 R1 # Σ2 Γ;R]R1 ] L1;β1 ` mod1 : Σ1 ; e1
` L2 locates α2 R2 # Σ1 Γ,X1 : |Σ1|;R]R2 ] L2;β2 s̀tat mod2 : Σ′2
` (L1; Σ1)� (L2; Σ′2) ; δ Γ,X1 : |δΣ1|;R]R2 ] δL2;β2 ` mod2 : Σ2 ; e2

α1, α2 fresh ` δΣ1 + Σ2 ⇒ Σ ; f1/f2

Γ;R]R1 ]R2;β1, β2 ` (X1 =mod1) with mod2 : Σ ; λx. letX1 = f1 x in
letX2 = f2 x in
δ◦e1 X1; e2 X2

(LINK
;

)

` L1 locates α1 Γ;L1;β1 ` mod1 : Σ1 ; e1
` L2 locates α2 Γ,X1 : |Σ1|;L2;β2 s̀tat mod2 : Σ′2

` (L1; Σ1)� (L2; Σ′2) ; δ δΓ,X1 : |δΣ1|; δL2;β2 ` mod2 : Σ2 ; e2
β2, α2 fresh ` δΣ1 + Σ2 ⇒ |Σ|; f1/f2

Γ; {||};β1, α1 ` (X1 =mod1) seals mod2 : |Σ1|; λx. new β2 in def α1 := δ◦α1 in
letx′= Create(|Σ|) in
letX1 = f1 x

′, X2 = f2 x
′ in

Copy(X1, x : |Σ1|); e1 X1; e2 X2

(SEAL
;

)

Γ ` usig ; Φ

Γ; {||}; ∅ ` [:usig] : [[Φ]]− ; λx.{}
(IUN

;

)
Γ ` mod : Φ ; e

Γ; {||}; ∅ ` [mod] : [[Φ]]+ ; λx. def x:=e
(EUN

;

)

Γ ` mod : [[∀α.∃β. (L; Σ)]]+ ; e dom(δ) = {α, β}
Γ; δL; δβ ` new mod : δΣ ; λx. (! e) δ◦α δ◦β x

(NEW
;

)

Γ ` usig ; ∀α.∃β. (L; Σ) dom(δ) = {α, β} Γ ` exp : 〈[|∀α.∃β. (L; Σ)|]〉; e

Γ; δL; δβ ` unpack(exp as usig) : δΣ ; λx. e δ◦α δ◦β x
(UNPACK

;

)

Fig. 19. Evidence Translation Rules for MixML

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:58 A. Rossberg and D. Dreyer

Complete Modules: Γ ` mod : Σ ; e

Γ; {||};β ` mod : |Σ|; e β fresh β 6∈ fv(Σ)

Γ ` mod : |Σ|; new β in letx= Create(|Σ|) in e x;x
(COMPL

;

)

Units: Γ ` mod : Φ ; e

Γ;L;β ` mod : Σ ; e ` L locates α α, β fresh

Γ ` mod : ∀α.∃β. (L; Σ) ; λαU. λβL. e
(UNIT

;

)

Core-Language Terms: Γ ` exp : A ; e

Γ ` mod : [[A]]+ ; e

Γ ` val(mod) : A ; !e
(PVAL

;

)

Γ ` mod : Φ ; e
Γ ` pack(mod) : 〈[|Φ|]〉; e

(PACK
;

)

Fig. 20. Evidence Translation Rules for MixML (continued)

Definition 8.2 (Well-Typed Judgment). For any MixML judgment ` J we define:

∆ ` J def⇔ ` J ∧ fv(J ) ⊆ dom(∆) ∧∆ � U

Furthermore, Figure 22 defines well-formed elaboration environments. An environ-
ment is well-formed if all contained semantic signatures are well-formed. For well-
formed signatures we distinguish between synthesis and analysis signatures. Intu-
itively, synthesis signatures are those that can be derived for modules by the typing
rules, while analysis signatures are a subset that correspond to signatures the pro-
grammer could have written down explicitly. For both, all contained type constructors
must be well-formed, and the import locators in contained unit signatures must be
well-formed (i.e., fit the signature). For analysis signatures, the export locators in unit
signatures must be well-formed as well. Only analysis signatures may be used on the
right-hand side of the unit signature matching judgment. Accordingly, all unit signa-
tures describing unit imports must be analysis, even inside synthesis signatures. (This
is analogous to corresponding definitions for functor signatures and their arguments
in previous work, e.g., Dreyer et al. [2003] or Rossberg et al. [2010].) Finally, note that
locators L and realizers R are special cases of signatures, so the definitions of analysis
and synthesis are readily applicable to them.

The following lemma states a number of easy properties about synthesis and analy-
sis signatures and the relation between them:

LEMMA 8.3 (ANALYSIS AND SYNTHESIS SIGNATURES).

(1) If ∆ ` Σ ⇓, then ∆ ` Σ ⇑.
(2) If ∆ ` Φ ⇓, then ∆ ` Φ ⇑.
(3) If ∆ ` Σ ⇑, then ∆ ` |Σ| ⇑.
(4) If ∆ ` Σ ⇓, then ∆ ` −Σ ⇓.
(5) If ∆ ` |Σ| ⇓, then ∆ ` Σ ⇑.
(6) If ∆ ` Σ ⇑ and |Σ| = −Σ, then ∆ ` Σ ⇓.
(7) If ∆ ` Σ ⇑ and R ⊆ Σ, then ∆ ` R ⇑.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:59

Signature Merging: ` Σ1 + Σ2 ⇒ Σ ; f1/f2

` Σ2 + Σ1 ⇒ Σ ; f2/f1

` Σ1 + Σ2 ⇒ Σ ; f1/f2
(MSYM

;

)

` [[= A]] + [[= A]]⇒ [[= A]] ; λx.x / λx.x
(MTYP

;

)

` A1 ≤ A2 ; f

` [[A1]]± + [[A2]]− ⇒ [[A1]]± ; λx.x / λx. letx2 = newA◦2 in def x2 := f (!x); x2
(MVAL

;

)

` [[Φ]]− + [[Φ]]− ⇒ [[Φ]]− ; λx.x / λx.x
(MUN1

;

)

` Φ1 ≤ Φ2 ; f

` [[Φ1]]+ + [[Φ2]]− ⇒ [[Φ1]]+ ; λx.x / λx. letx2 = newΦ◦2 in def x2 := f (!x); x2
(MUN2

;

)

` Σ + {||} ⇒ Σ ; λx.x / λx.{} (MEMP
;

)

` 6∈ `2 ` {|`1 : Σ1|}+ {|`2 : Σ2|} ⇒ {|`3 : Σ3|}; f1/f2

` {|` : Σ, `1 : Σ1|}+ {|`2 : Σ2|} ⇒ {|` : Σ, `3 : Σ3|}; λx.{f1 (x|`3), `=x.`}
/ λx. f2 (x|`3)

(MSTR1
;

)

` Σ1 + Σ2 ⇒ Σ3 ; f1/f2 ` {|`1 : Σ′1|}+ {|`2 : Σ′2|} ⇒ {|`3 : Σ′3|}; f ′1/f
′
2

` {|` : Σ1, `1 : Σ′1|}+ {|` : Σ2, `2 : Σ′2|} ⇒ {|` : Σ3, `3 : Σ′3|};
λx.{f ′1 (x|`3), `= f1 (x.`)}

/ λx.{f ′2 (x|`3), `= f2 (x.`)}

(MSTR2
;

)

Unit Signature Matching: ` Φ1 ≤ Φ2 ; f

` (L−1 ; Σ1)� (L+
2 ; Σ2) ; δ ` δΣ1 +−δΣ2 ⇒ |Σ|; f1/f2

` ∀α1.∃β1. (L−1 ;L+
1 ; Σ1) ≤ ∀α2.∃β2. (L−2 ;L+

2 ; Σ2) ;
λy : (∀Uα1.∀Lβ1. (Σ

◦
1 → {}U))U.

λαU
2 . λβ

L
2 . λx2 : Σ◦2.

new β1 in def β2 := δ◦β2 in
letx= Create(|Σ|) in
Copy(f2 x, x2 : Σ2); y δ◦α1 β1 (f1 x)

(MATCH
;

)

Fig. 21. Evidence Translation Rules for MixML (continued)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:60 A. Rossberg and D. Dreyer

Synthesis Environments: ` Γ ⇑ ` (Γ;R;β) ⇑

` ε ⇑
` Γ ⇑ ` Σ ⇑
` Γ,X : Σ ⇑

` Γ ⇑ ` R ⇑
` Γ;R;β ⇑

Synthesis Signatures: ` Σ ⇑ ` Φ ⇑

` A ⇑ κ
` [[= A]] ⇑

` A ⇑ type
` [[A]]± ⇑

` Φ ⇑
` [[Φ]]+ ⇑

` Φ ⇓
` [[Φ]]− ⇑

` Σ ⇑
` {|` : Σ|} ⇑

` Σ ⇑ ` L locates α L ⊆ Σ

` ∀α.∃β. (L; Σ) ⇑

Analysis Signatures: ` Σ ⇓ ` Φ ⇓

` A ⇑ κ
` [[= A]] ⇓

` A ⇑ type
` [[A]]± ⇓

` Φ ⇓
` [[Φ]]± ⇓

` Σ ⇓
` {|` : Σ|} ⇓

` Σ ⇓ ` L− locates α ` L+ locates β L− ⊆ Σ L+ ⊆ Σ

` ∀α.∃β. (L−;L+; Σ) ⇓

Fig. 22. Synthesis and Analysis Signatures

(8) Let R = R1 ∪R2. If and only if ∆ ` R ⇑, then ∆ ` R1 ⇑ and ∆ ` R2 ⇑.
(9) ` L ⇓.

(10) If ∆ ` Σ ⇑ and ∆′ ` δ◦ : ∆, then ∆′ ` δΣ ⇑.
(11) If ∆ ` Σ ⇓ and ∆′ ` δ◦ : ∆, then ∆′ ` δΣ ⇓.
(12) If ∆ ` Γ ⇑ and ∆′ ` δ◦ : ∆, then ∆′ ` δΓ ⇑.

More interestingly, our module typing rules always derive well-formed synthesis sig-
natures (or, in the case of the unit signature judgment, analysis signatures):

LEMMA 8.4 (DERIVED TYPES AND SIGNATURES). Suppose ∆ ` (Γ;R;β) ⇑.

(1) If Γ ` typ ; A, then ∆ ` A ⇑ κ.
(2) If Γ ` exp : A, then ∆ ` A ⇑ type.
(3) If Γ;R;β ` mod : Σ, then ∆ ` Σ ⇑ and R ⊆ Σ.
(4) If Γ ` mod : Σ, then ∆ ` Σ ⇑.
(5) If Γ ` mod : Φ, then ∆ ` Φ ⇑.
(6) If Γ ` usig ; Φ, then ∆ ` Φ ⇓.
(7) If ` Σ1 + Σ2 ⇒ Σ, and ∆ ` Σ1 ⇑ and ∆ ` Σ2 ⇑, then ∆ ` Σ ⇑.

Also, if R1 ⊆ Σ1 and R2 ⊆ Σ2, then R1 ∪R2 ⊆ Σ.

(The properties also hold for the respective static judgments.)

PROOF. By straightforward simultaneous induction on the derivation. The proper-
ties 1 and 2 again depend on the core language, and we assume they are provable for

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:61

any additional constructs. �

As a next step, the definitions of erasure are sound:

LEMMA 8.5 (PROPERTIES OF ERASURE).

(1) (δA)◦ = δ◦A◦.
(2) (δΣ)◦ = δ◦Σ◦.
(3) (δΓ)◦ = δ◦Γ◦.
(4) If ∆ ` Σ ⇑, then Σ◦ = τ ι with ∆ ` τ : typeU.
(5) Σ−◦ � U.
(6) Γ◦ � U.
(7) |Σ|−◦ = Σ−◦.
(8) Σ◦ = Σ◦ ∗ Σ−◦.
(9) Γ◦ = Γ◦ ∗ Γ◦.

(10) If ∆ ` A ⇑ κ, then ∆ ` A◦ : κU.
(11) If ∆ ` Γ ⇑, then ∆ ` Γ◦.
(12) If ∆ ` (Γ;R;β) ⇑, then ` (∆ ∗ βL; ε; Γ◦).

Here and in the following, we write ∆ ∗ βL as shorthand for the environment ∆′ that
is the same as ∆ except that all variables β are made linear.9 Some of the properties
(1 and 10) depend on additional cases for core-level types, which we assume to be well-
defined.

Given that, it is straightforward to show that the auxiliary Create and Copy func-
tions make sense:

LEMMA 8.6 (PROPERTIES OF MODULE CREATION AND COPYING). Let ∆ ` Σ ⇑.

(1) If Σ = |Σ|, then ∆; ε; ε ` Create(Σ) : Σ◦.
(2) If ∆; Ψ; Γ1 ` e− : (−Σ)◦ and ∆; Ψ; Γ2 ` e+ : Σ◦ and Γ = Γ1 ∗ Γ2,

then ∆; Ψ; Γ ` Copy(e−, e+ : Σ) : {}U.
(3) Create(Σ) = Create(δΣ).
(4) Copy(e−, e+ : Σ) = Copy(e−, e+ : δΣ).

After these preparations, the following property is our main result. It shows that all
valid derivations of the evidence translation produce only well-formed LTG types and
terms.

THEOREM 8.7 (SOUNDNESS OF TRANSLATION). Suppose ∆ ` (Γ;R;β) ⇑.

(1) If Γ ` exp : A ; e, then ∆; ε; Γ◦ ` e : (A◦)U.
(2) If Γ ` typ ; A, then ∆ ` A◦ : κU.
(3) If Γ;R;β ` mod : Σ ; e, then ∆ ∗ βL; ε; Γ◦ ` e : (Σ◦ → {}U)ι,

where ι = U iff β is empty, and ι = L otherwise.
(4) If Γ ` mod : Σ ; e, then ∆; ε; Γ◦ ` e : Σ−◦.
(5) If Γ ` mod : Φ ; e, then ∆; ε; Γ◦ ` e : (Φ◦)U.
(6) If Γ ` usig ; Φ, then ∆ ` Φ◦ : typeU.
(7) If ` Σ1 + Σ2 ⇒ Σ ; f1/f2 and ∆ ` Σ1 ⇑ and ∆ ` Σ2 ⇑, then Σ◦ = Σ′1

◦ ∗ Σ′2
◦

with ∆; ε; ε ` f1 : Σ′1
◦ → Σ◦1 and ∆; ε; ε ` f2 : Σ′2

◦ → Σ◦2.
(8) If ` A1 ≤ A2 ; f and ∆ ` A1 ⇑ type, ∆ ` A2 ⇑ type, then ∆; ε; ε ` f : (A◦1)U → (A◦2)U.
(9) If ` Φ1 ≤ Φ2 ; f and ∆ ` Φ1 ⇑ and ∆ ` Φ2 ⇓, then ∆; ε; ε ` f : (Φ◦1)U → (Φ◦2)U.

9Recall that splitting for type environments does not actually allow dropping bindings on either side, so
because dom(∆) ⊇ β, this is not a “proper” split, but a slightly generalized notation.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:62 A. Rossberg and D. Dreyer

(10) If ` (L1; Σ1) � (L2; Σ2) ; δ and ∆, αU
1 , α

U
2 ` Σ1 ⇑ and ∆, αU

1 , α
U
2 ` Σ2 ⇑ and

` L1 locates α1 and ` L2 locates α2 and α1, α2, β disjoint, then dom(δ) = {α1, α2}
with ∆ ∗ βL ` δ◦ : (∆ ∗ βL), αU

1 , α
U
2 .

PROOF. By induction on the derivations, relying on the previous lemmas, and on
Lemma 7.15 (Substitution Reversal) for the rules SEAL

;

and MATCH
;

, which define
type names in correspondence to a substitution that the rules compute. We give the
details of the interesting cases in Appendix A. Once more, the arguments for cases
1, 2 and 8 depend on the core language, and we assume they are provable for any
additional constructs. �

9. ALGORITHMIC TYPE-CHECKING AND DECIDABILITY
Let us recapitulate: we have a type system for MixML, we have an operational seman-
tics (by means of translation into an internal language), and we have a proof that the
type system is sound under this semantics. However, as is standard practice, the type
system that we have given is merely a declarative specification. Such a formulation
has certain advantages—for example, it is relatively easy to understand and to prove
correct. But it does not necessarily suggest an obvious algorithm for deciding whether
a given program is actually well-formed. For a language’s practical implementation in
a compiler, the existence of such an algorithm is clearly important.

The MixML typing rules are syntax-directed, so for the most part, they can already
be read as a recursive algorithm taking a typing context and the program to check as
input, and producing a respective type as output (the elaboration rules additionally
produce a term). For example, in order to type-check the module expression mod .`
under a given context Γ;R;β, we need to use rule DOT. Consequently, we recursively
type-check mod under the modified context Γ; {|` :R|};β and verify that the result is a
signature of the form {|` : Σ, . . . |}, so that we can extract the desired Σ. Likewise for
most other constructs.

However, on closer inspection of all the rules, we find two relevant sources of non-
determinism that seemingly require appropriate guesses to proceed successfully:

(1) In rule EVAL, in the static pass, the type A classifying the exported term has to be
chosen without looking at the term.

(2) In rules LINK, SEAL, COMPL, and UNIT, new locators L and/or export type names
β need to be chosen for the premises. (Moreover, the input realizer and export
variables have to be split up into suitable disjoint parts in rules LINK and SEAL.)

In this section, we are going to show that in all these instances the right guesses
can, in fact, be made algorithmically. By plugging the decision procedures we give into
the existing typing rules, we then have a deterministic algorithm for type-checking
MixML. As a corollary, we will furthermore find that the types assigned by the MixML
type system are unique.

Assumptions about the core language. Once more, we need to make appropriate as-
sumptions about the definitions of the core language judgments that are plugged into
our type system (cf. Section 4.1). Concretely, we assume that deterministic algorithms
exist for checking these judgments in mutual recursion with module type-checking.
The details are given with the respective Theorems 9.2, 9.8, and 9.9 below.

9.1. The Static Pass
Let us first address the issue of guessing a type A in rule EVAL during the static pass
(Point 1 above).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:63

Modules: Γ;R;β s̀tat⊥ mod : Σ

Γ; {||}; ∅ s̀tat⊥ [exp] : [[⊥]]+
(EVAL-DET)

Fig. 23. Deterministic Typing Rule for the Static Pass

The role of the static pass is to compute the static components of a signature, before
performing the full type-check. That is, its only purpose is to collect the type exports
needed for the type lookup in rules LINK and SEAL. We don’t really care about the dy-
namic components of the signature during the static pass because they are irrelevant
for type lookup.

That observation gives us some leeway regarding the concrete choice of A in
rule EVAL during the static pass, because it only describes a dynamic component. In
fact, it does not matter at all what type we pick in any static instance of that rule, as
long as it still allows a successful completion of the static pass! The choice can never
affect any static component.

But what is a sufficient condition for making the pass succeed? Inspecting the rules
of our system, we see that the only two rules that might be affected by a wrong choice
for atomic term export signatures [[A]]+ are rule MVAL for merging them, where the
subtyping premise might be violated, and rule COMPL for complete modules, where an
export contained in Σ might capture a local type variable from β and thus violate the
side condition about fv(Σ). The only other rule that cares about atomic term exports is
the term-level rule PVAL, and that will not be used in the static pass, because all uses
of the term typing judgment are shaded.

Intuitively, then, the answer is: any subtype of the A derived in the main pass will
suffice for the static pass, as long as it doesn’t have additional free variables. In par-
ticular, a canonical choice would be the bottom type (which is closed and is a subtype
of all types), if the core language type system provides such a type. For example, in
ML, the polymorphic type scheme ∀α.α would be appropriate. But even if the language
does not already provide such a type, we can easily add it pro forma, just for the pur-
pose of module type-checking: since we don’t type-check expressions in the static pass,
the only place where it will actually interact with proper core types is in the (static)
merging rule for atomic term signatures. It will never escape to, or otherwise show up
in, the main judgment.

For this purpose, assume that ⊥ denotes a closed core type for which the subsump-
tion ` ⊥ ≤ A holds for all A. Let s̀tat⊥ stand for a variant of the static judgment that is
the same as s̀tat, except that rule EVAL is replaced by the deterministic rule EVAL-DET
shown in Figure 23.

In order to prove that the s̀tat⊥ judgment produces the same results as the original
s̀tat judgment—i.e., computes a Σ with the same static components—we first have to
define a simple notion of signature approximation, given in Figure 24. It expresses
the relation between the signatures derived by s̀tat⊥ and the ones derived by s̀tat,
i.e., a signature Σ1 approximates Σ2, written Σ1 � Σ2, if they coincide on all their
components except for term exports, which may vary through subtyping. We extend
the relation pointwise to environments Γ.

Here, we collect a number of straightforward properties of signature approximation:

LEMMA 9.1 (PROPERTIES OF SIGNATURE APPROXIMATION).

(1) Σ � Σ.
(2) If Σ1 � Σ2, then |Σ1| � |Σ2|.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:64 A. Rossberg and D. Dreyer

[[= A]] � [[= A]]
[[A]]− � [[A]]−

[[A1]]+ � [[A2]]+ if ` A1 ≤ A2 and fv(A1) ⊆ fv(A2)
[[Φ]]− � [[Φ]]−

[[Φ1]]+ � [[Φ2]]+ if Φ1 � Φ2

{|` : Σ1|} � {|` : Σ2|} if Σ1 � Σ2

∀α.∃β. (L1;L2; Σ1) � ∀α.∃β. (L1;L2; Σ2) if Σ1 � Σ2

Fig. 24. Signature Approximation

(3) If Σ1 � Σ2, then δΣ1 � δΣ2.
(4) If Σ1 � Σ2, then fv(Σ1) ⊆ fv(Σ2).
(5) If Σ1 � Σ2 and |Σ2| = −Σ2, then Σ1 = Σ2.
(6) If Σ1 � Σ2, then dom(Σ1) = dom(Σ2) and ∀`s ∈ dom(Σ1), Σ1(`s) = Σ2(`s).

The last property is the most interesting one, because it implies that looking up types
from an approximation of a signature Σ will have the same result as looking up those
types from Σ itself (recall the definitions for Σ(`s) and dom(Σ) from Figure 4, which
only consider type components). That is the property we ultimately rely on when we
want to implement the non-deterministic static pass with a deterministic one. The
next theorem and its corollary use this property:

THEOREM 9.2 (DETERMINISTIC SIGNATURE APPROXIMATION).
Assume Γ′ � Γ and Σ′1 � Σ1 and Σ′2 � Σ2.

(1) If Γ s̀tat typ ; A, then Γ′ s̀tat⊥ typ ; A.
(2) If Γ;R;β s̀tat mod : Σ, then Γ′;R;β s̀tat⊥ mod : Σ′ with Σ′ � Σ.
(3) If Γ s̀tat mod : Σ, then Γ′ s̀tat⊥ mod : Σ′ with Σ′ � Σ.
(4) If Γ s̀tat mod : Φ, then Γ′ s̀tat⊥ mod : Φ′ with Φ′ � Φ.
(5) If Γ s̀tat usig ; Φ, then Γ′ s̀tat⊥ usig ; Φ.
(6) If s̀tat Σ1 + Σ2 ⇒ Σ, then s̀tat⊥ Σ′1 + Σ′2 ⇒ Σ′ with Σ′ � Σ.
(7) If ` (L1; Σ1)� (L2; Σ2) ; δ, then ` (L1; Σ′1)� (L2; Σ′2) ; δ.

PROOF. By easy induction on the derivation. Once more, Part 1 depends on the
details of the core language, and we assume it provable for any additional cases. �

COROLLARY 9.3 (COMPLETENESS OF DETERMINISTIC STATIC JUDGMENTS).
If Γ;R;β s̀tat mod : Σ, then Γ;R;β s̀tat⊥ mod : Σ′, such that dom(Σ) = dom(Σ′) and
∀`s ∈ dom(Σ), Σ(`s) = Σ′(`s).

The inverse is trivial, because s̀tat⊥ is just a restriction of s̀tat:

THEOREM 9.4 (SOUNDNESS OF DETERMINISTIC STATIC JUDGMENTS).
If Γ;R;β s̀tat⊥ mod : Σ, then Γ;R;β s̀tat mod : Σ.

With the last two properties together, we are free to replace s̀tat with s̀tat⊥, and can
hence cope with the first source of non-determinism in the MixML typing rules.

9.2. Templates
Dealing with the other source of non-determinism—the up-front choice of locators and
abstract type names for the context (Point 2 above)—requires a bit more work.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:65

Locators and abstract type names represent the type imports and exports, respec-
tively, of a module mod . Both are consumed by the typing rules in a deterministic,
linear fashion (locators—potentially refined to realizers on the way—in rule ITYP, and
abstract type names in rule SEAL, or both simultaneously in rules NEW or UNPACK). It
should hence be possible to predict suitable choices beforehand by just looking at the
structure of mod , and these choices should be unique up to renaming. However, it is
not entirely obvious that we can do this. For example, consider the module

{X = [mod],Y = [:usig],Z = new Y with new X}
Without actually type-checking mod and usig , how can we tell the imports or exports
in the module’s Z component?

Obviously, we need some amount of inference. The central insight, however, is that
it is enough to infer the “shape” of a module’s signature. Such a shape does not need to
contain any concrete type information—knowing the kinds of type imports and exports
is enough. Computing a shape hence does not require full type-checking.

Making the notion of shape precise, Figure 25 defines template signatures S, which
are essentially semantic signatures with all type information, up to kinds, erased (term
imports and exports are erased completely). In the same style, template type locators L
are defined. The figure also defines template erasure ( )T, which maps semantic objects
into corresponding template objects, plus other meta-notation that corresponds to the
respective operations on semantic signatures (cf. Figures 4 and 8).

Template Computation. The template signature of a module expression mod can be
computed by a simple recursive pre-pass over mod . Figures 26–27 specify the algo-
rithm. Given a module and a template context (a template-erased version of a full
typing environment Γ) it returns a template signature S, a template type locator L,
and a list of kinds for the export type names of the module—without choosing actual
names. The algorithm makes use of the meta-notation defined in Figure 25. (Note that,
unlike the similar notation for proper locators, field removal L \`s is defined on tem-
plates even in the case where `s contains paths not defined in L—this provides some
convenience in rule LINKT.)

The template locators and export kinds computed by these rules mirror the locators
and variables occurring in the context of the corresponding typing rules from Figure 5.
In addition to computing locators and export kinds, the template signatures S produced
by the algorithm also keep track of (the templates of) atomic unit signatures defined in
the module. This knowledge is necessary for dealing with examples like the one given
above, where new is applied to local units. It is used in rule NEWT, accordingly.

The definition of template signature merging is given in Figure 25. It mirrors the
merging judgment on proper signatures. Signature merging is the sole reason that we
need to track polarity of atomic unit signatures in templates: during template compu-
tation we cannot check unit signature matching, so the definition of merging for atomic
unit signatures may be based solely on polarity—this is where the need for the restric-
tion on unit merging discussed in Section 5.4 becomes manifest in the type-checking
algorithm.

Completeness. Our algorithm for template computation looks sufficiently straight-
forward. Some work remains, though, in order to actually prove it complete.

The following lemma states some easy facts about template erasure and its interac-
tion with the other meta-operations:

LEMMA 9.5 (PROPERTIES OF TEMPLATES).

(1) RT = L for some L.
(2) (−Σ)T = −ΣT.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:66 A. Rossberg and D. Dreyer

Module Templates S ::= [[κ]] | [[F]]± | {|` :S|}
Locator Templates L ::= [[κ]] | {|` :L|}
Unit Templates F ::= L;κ;S

S.`s def
=

{
S if `s = ε
S′ if `s = `s′.` and S.`s′ = {|` :S′, . . . |}

S(`s)
def
= κ if S.`s = [[κ]]

dom(S)
def
= {`s | S(`s) = κ}

L ⊆ S def⇔ ∀ `s ∈ dom(L). L(`s) = S(`s)

L # S def⇔ dom(L) ∩ dom(S) = ∅
L1 ] L2

def
= L such that dom(L) = dom(L1) ] dom(L2)

and ∀`s ∈ dom(L). L(`s) = L1(`s) ∨ L(`s) = L2(`s)

[[= A]]T
def
= [[κ]] where ` A ⇑ κ

([[A]]±)T
def
= {||}

([[Φ]]±)T
def
= [[ΦT]]±

{|` : Σ|}T def
= {|` : ΣT|}

(∀α.∃β. (L1;L2; Σ))T
def
= LT

1 ;κβ ; ΣT

εT
def
= ε

(Γ,X : Σ)T
def
= ΓT,X : ΣT

|[[κ]]| def
= [[κ]]

|[[F]]±| def
= [[F]]+

|{|` :S|}| def
= {|` : |S||}

−[[κ]]
def
= [[κ]]

−[[F]]±
def
= [[F]]∓

−{|` :S|} def
= {|` : − S|}

|S|ε
def
= |S|

|{|` :S, `′ :S′|}|`.`s
def
= {|` : |S|`s, `′ :S′|}

|S|`s1,...,`sn
def
= | . . . |S|`s1 . . . |`sn

L \ε def
= {||}

{|` :L, `′ :L′|} \`.`s def
= {|` :L \`s, `′ :L′|}

{|`′ :L′|} \`.`s def
= {|`′ :L′|} if ` /∈ `′

L \`s1, . . . , `sn
def
= L \`s1 . . . \`sn

S1 + S2
def
= S2 + S1

[[κ]] + [[κ]]
def
= [[κ]]

[[F]]− + [[F]]−
def
= [[F]]−

[[F1]]+ + [[F2]]−
def
= [[F1]]+

S + {||} def
= S

{|` :S1, `1 :S′1|} + {|` :S2, `2 :S′2|}
def
= {|` :S1 + S2, `1 :S′1, `2 :S′2|} where `1 ∩ `2 = ∅

Fig. 25. Signature Templates

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:67

Type Constructor Templates: ΓT ` typ ⇒ κ

ΓT ` mod ⇒ {||};κ; [[κ′]]

ΓT ` typ(mod)⇒ κ′
(PTYPT)

ΓT ` pack(usig)⇒ type
(PACKAGET)

ΓT ` α⇒ κα
(TVART)

ΓT ` typ ⇒ κ

ΓT ` λα.typ ⇒ κα → κ
(LAMT)

ΓT ` typ1 ⇒ κ2 → κ

ΓT ` typ1 typ2 ⇒ κ
(APPT)

Module Templates: ΓT ` mod ⇒ F

X : |S| ∈ ΓT

ΓT ` X⇒ {||}; ∅; |S|
(VART)

ΓT ` {} ⇒ {||}; ∅; {||}
(EMPT)

ΓT ` [:knd]⇒ [[knd ]]; ∅; [[knd ]]
(ITYPT)

ΓT ` typ ⇒ κ

ΓT ` [typ]⇒ {||}; ∅; [[κ]]
(ETYPT)

ΓT ` [:typ]⇒ {||}; ∅; {||}
(IVALT)

ΓT ` [exp]⇒ {||}; ∅; {||}
(EVALT)

ΓT ` mod ⇒ L;κ;S
ΓT ` {`=mod} ⇒ {|` :L|};κ; {|` :S|}

(STRT)
ΓT ` mod ⇒ {|` :L|};κ; {|` :S, `′ :S′|}

ΓT ` mod .`⇒ L;κ;S
(DOTT)

ΓT ` mod1 ⇒ L ] L1;κ1;S1 ΓT,X : |S1| ` mod2 ⇒ L ] L2;κ2;S2 L1 # L2

ΓT ` (X =mod1) with mod2 ⇒ L ] L1\dom(S2) ] L2\dom(S1);κ1, κ2;S1 + S2
(LINKT)

ΓT ` mod1 ⇒ L;κ;S ` L locates κ′

ΓT ` (X =mod1) seals mod2 ⇒ {||};κ, κ′; |S|
(SEALT)

ΓT ` usig ⇒ F
ΓT ` [:usig]⇒ {||}; ∅; [[F]]−

(IUNT)
ΓT ` mod ⇒ F

ΓT ` [mod]⇒ {||}; ∅; [[F]]+
(EUNT)

ΓT ` mod ⇒ {||};κ; [[F]]+

ΓT ` new mod ⇒ F
(NEWT)

ΓT ` usig ⇒ F
ΓT ` unpack(exp as usig)⇒ F

(UNPACKT)

Unit Signature Templates: ΓS ` usig ⇒ F

ΓT ` mod ⇒ L; ∅;S L = L1 ] L2 L1 = L \`s ` L2 locates κ

ΓT ` mod export `s⇒ L1;κ; |S|`s
(EXPORTT)

ΓT ` mod ⇒ L; ∅;S L = L1 ] L2 L2 = L \`s ` L2 locates κ

ΓT ` mod import `s⇒ L1;κ;−|S|`s
(IMPORTT)

Fig. 26. Template Computation

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:68 A. Rossberg and D. Dreyer

Template Locators: ` L locates κ

` L locates α

` LT locates κα
(LOCT)

Fig. 27. Template Computation (continued)

[[κ1]] ≈ [[κ2]]
[[F1]]± ≈ [[F2]]± if F1 ≈ F2

{|` :S1|} ≈ {|` :S2|} if S1 ≈ S2
(L1;κ1;S1) ≈ (L2;κ2;S2) if S1 ≈ S2

Fig. 28. Template Approximation

(3) |Σ|T = |ΣT|.
(4) (|Σ|`s)T = |ΣT|`s.
(5) (L\`s)T = LT \`s.
(6) (L1 ] L2)T = LT

1 ] LT
2 .

(7) dom(ΣT) = dom(Σ).
(8) (δΣ)T = ΣT.

To deal with the rule LINK in the completeness proof below, we need one further prop-
erty. Namely, we need to know that the signatures Σ′2 and Σ2 computed by the static
and the regular pass over mod2 in this rule have the same domain. This cannot be
proved directly, but we can prove it as a corollary of the following more general lemma
that states that the templates of the two signatures are sufficiently similar. More pre-
cisely, we define a simple notion of template approximation in Figure 28 (which we ex-
tend pointwise to template environements ΓT). This approximation ignores the kinds
of type imports, which is convenient to make the induction go through easily, indepen-
dent of local choices of locators and type variables. Obviously, the definition is reflexive,
i.e., S1 = S2 implies S1 ≈ S2 (and thus likewise for template environments).

LEMMA 9.6 (DETERMINISTIC SHAPES). Assume ΓT ≈ Γ′T.

(1) If Γ;R;β ` mod : Σ and Γ′;R′;β′ ` mod : Σ′, then ΣT ≈ Σ′T.
(2) If Γ ` mod : Σ and Γ′ ` mod : Σ′, then ΣT ≈ Σ′T.
(3) If Γ ` mod : Φ and Γ′ ` mod : Φ′, then ΦT ≈ Φ′T.
(4) If Γ ` usig ; Φ and Γ′ ` usig ; Φ′, then ΦT ≈ Φ′T.
(5) If ` Σ1 + Σ2 ⇒ Σ and ` Σ′1 + Σ′2 ⇒ Σ′ with ΣT

1 ≈ Σ′1
T and ΣT

2 ≈ Σ′2
T, then ΣT ≈ Σ′T.

(All properties also hold if either or both judgments are static.)

COROLLARY 9.7 (DETERMINISTIC DOMAINS). If Γ;R;β ` mod : Σ and Γ′;R′;β′ `
mod : Σ′ with ΓT = Γ′T, then dom(Σ) = dom(Σ′). (Likewise if either or both judgments
are static.)

Using these properties we can prove that template computation is complete with
respect to the typing judgment:

THEOREM 9.8 (COMPLETENESS OF TEMPLATE COMPUTATION). Suppose ` Γ ⇑.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:69

(1) If Γ ` typ ; A and ` A ⇑ κ, then ΓT ` typ ⇒ κ.
(2) If Γ;R;β ` mod : Σ, then ΓT ` mod ⇒ RT;κβ ; ΣT.
(3) If Γ ` mod : Σ, then ΓT ` mod ⇒ {||};κ; ΣT for some κ.
(4) If Γ ` mod : Φ, then ΓT ` mod ⇒ ΦT.
(5) If Γ ` usig ; Φ, then ΓT ` usig ⇒ ΦT.
(6) If ` Σ1 + Σ2 ⇒ Σ, then ΣT

1 + ΣT
2 = ΣT.

(7) If ` (L1; Σ1)� (L2; Σ2) ; δ and L1 ⊆ Σ1 and L2 ⊆ Σ2, then L1 # L2 and dom(L1) ⊆
dom(Σ2) and dom(L2) ⊆ dom(Σ1).

PROOF. By induction on derivations. The first part again depends on the details of
the core language, and we assume that it can be proved for all cases not specified by
our grammar. The most interesting module cases are the following:

— Rule LINK:
— to show: ΓT ` (X =mod1) with mod2 ⇒ (R]R1 ]R2)T;κβ1 , κβ2 ; ΣT

— premise: Γ;R]R1]L1;β1 ` mod1 : Σ1 and Γ,X : |Σ1|;R]R2]L2;β2 s̀tat mod2 : Σ′2
and Γ,X : |δΣ1|;R ] R2 ] δL2;β2 ` mod2 : Σ2 with R1 # Σ2 and R2 # Σ1, and
` (L1; Σ1)� (L2; Σ′2) ; δ and ` δΣ1 + Σ2 ⇒ Σ

— let S1 = ΣT
1 and S2 = ΣT

2
— let L = RT and L1 = (R1 ] L1)T and L2 = (R2 ] L2)T

— by Lemma 9.5, (R]R1 ] L1)T = L ] L1 and (R]R2 ] L2)T = L ] L2

— by Rule LINKT, we need to show:
(1) ΓT ` mod1 ⇒ L ] L1;κβ1

;S1
— follows by induction (Part 2)

(2) ΓT,X : |S1| ` mod2 ⇒ L ] L2;κβ2 ;S2
— follows by induction (Part 2), using Lemma 9.5 to show that |S1| = |Σ1|T =
|δΣ1|T and L ] L2 = RT ]RT

2 ] LT
2 = RT ]RT

2 ] (δL2)T

(3) L1 # L2, which using Lemma 9.5 reduces to showing:
(a)R1 # R2: by definition of ]
(b)L1 # R2: by Lemma 8.4, L1 ⊆ Σ1, and by assumption, Σ1 # R2

(c)R1 # L2: dom(L2) = dom(δL2), and by Lemma 8.4, δL2 ⊆ Σ2, and by
assumption, Σ2 # R1

(d)L1 # L2: follows from Part 7, using Lemma 8.4 to show that L1 ⊆ Σ1 and
L2 ⊆ Σ′2

(4)RT
1 = L1\dom(S2), i.e., RT

1 = RT
1\dom(S2) ] LT

1\dom(S2)
By Lemma 9.5 this reduces to showing:
(a)RT

1\dom(S2) = RT
1 :

this is entailed by R1 # Σ2, which was an assumption
(b)LT

1\dom(S2) = ∅:
this is entailed by showing dom(L1) ⊆ dom(Σ2):
— by Lemma 8.4, L1 ⊆ Σ1 and L2 ⊆ Σ′2
— by Part 7, dom(L1) ⊆ dom(Σ′2)
— by Lemma 9.5, (Γ,X : |Σ1|)T = (δΓ,X : |δΣ1|)T
— by Corollary 9.7, dom(Σ′2) = dom(Σ2)

(5)RT
2 = L2\dom(S1), i.e., RT

2 = RT
2\dom(S1) ] LT

2\dom(S1)
By Lemma 9.5, this reduces to showing:
(a)RT

2\dom(S1) = RT
2 :

this is entailed by R2 # Σ1, which was an assumption
(b)LT

2\dom(S1) = ∅:
this is entailed by showing dom(L2) ⊆ dom(Σ1):
— by Lemma 8.4, L1 ⊆ Σ1 and L2 ⊆ Σ′2
— by Part 7, dom(L2) ⊆ dom(Σ1)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:70 A. Rossberg and D. Dreyer

(6) ΣT = S1 + S2
— by Lemma 9.8, (δΣ1)T = ΣT

1
— by induction (Part 6), S1 + S2 = ΣT

— Rule NEW:
— to show: ΓT ` new mod ⇒ (δL)T;κδβ ; (δΣ)T

— premise: Γ ` mod : [[∀α.∃β. (L; Σ)]]+

— by induction (Part 3), ΓT ` mod ⇒ {||};κ; [[LT;κβ ; ΣT]]+

— by rule NEWT, ΓT ` new mod ⇒ LT;κβ ; ΣT

— by Lemma 9.5, (δL)T = LT and (δΣ)T = ΣT

— by the assumption that δ is kind-preserving, κδβ = κβ
— Rule LOOKUP:

— to show:
(1)L1 # L2:

— proof by contradiction: assume `s ∈ dom(L1) ∩ dom(L2)
— then L1(`s) = α1 and L2(`s) = α2 for some α1, α2

— consequently, (Σ2 ◦ L−11 )(α1) = A2 and (Σ1 ◦ L−12 )(α2) = A1 for some A1,A2

— that is, Σ2(`s) = A2 and Σ1(`s) = A1

— by the definition of ], α1 6= α2

— consequently, (Σ2 ◦ L−11 ) ] (Σ1 ◦ L−12 ) ⊇ {α1 7→ A2, α2 7→ A1}
— by assumption, L1 ⊆ Σ1 and L2 ⊆ Σ2

— hence, A1 = α1 and A2 = α2

— then {α1 7→ A2, α2 7→ A1} is already cyclic, and suitable δi cannot possibly
exist

(2) dom(L1) ⊆ dom(Σ2):
— follows directly from the definitions of L−11 and ◦

(3) dom(L2) ⊆ dom(Σ1):
— likewise �

Putting It All Together. As an example of the use of the template computation algo-
rithm, consider computing the unit signature of a module expression mod under con-
text Γ according to rule UNIT. First compute ΓT ` mod ⇒ L;κ;S to obtain the templates
L and κ (S is not needed here). Then pick a fresh type variable, with the respective
kind, for each component in L and each of κ, from which you obtain a suitable locator
L and export type names β to check the premise Γ;L;β ` mod : Σ. Essentially, this
all amounts to adding the side condition ΓT ` mod ⇒ LT;κβ ;S to the original rule,
which determines a sufficiently unique choice for L and β locally. Doing so results in
the deterministic typing rule UNIT-DET shown in Figure 29.

For a similar effect, rule COMPL can be decorated with an additional premise for
computing a template, yielding the rule COMPL-DET in the same figure.

Rule SEAL needs two premises in its deterministic incarnation SEAL-DET, for both
constituent submodules. Note that the template computation spits out κβ1

, and thereby
also determines upfront how the split β1, α1 of the linear type variables from the input
context has to be performed.

A more complicated case is the remaining rule LINK, where the locators L1 and L2 are
only part of the realizers used in the premises. In this case, the template locators L1

and L2 computed for mod1 and mod2 by the algorithm correspond to the whole realizers
R ] R1 ] L1 and R ] R2 ] L2, respectively. We can employ a similar technique as in
the template computation rule LINKT to both determine how to split the rule’s input
realizer into R]R1 ]R2, and to obtain the actual L1 and L2. More precisely, we have

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:71

Modules: Γ;R;β ` mod : Σ

ΓT ` mod1 ⇒ RT ]RT
1 ] LT

1 ;κβ1
; ΣT

1

(R1 ] L1) # (R2 ] L2) ΓT, X : |S1| ` mod2 ⇒ RT ]RT
2 ] LT

2 ;κβ2
; ΣT

2

` L1 locates α1 R1 # Σ2 Γ;R]R1 ] L1;β1 ` mod1 : Σ1

` L2 locates α2 R2 # Σ1 Γ,X : |Σ1|;R]R2 ] L2;β2 s̀tat mod2 : Σ′2
` (L1; Σ1)� (L2; Σ′2) ; δ Γ,X : |δΣ1|;R]R2 ] δL2;β2 ` mod2 : Σ2

α1, α2 fresh ` δΣ1 + Σ2 ⇒ Σ

Γ;R]R1 ]R2;β1, β2 ` (X =mod1) with mod2 : Σ
(LINK-DET)

(SEAL-DET)
ΓT ` mod1 ⇒ LT

1 ;κβ1 ;S1 ` L1 locates α1 Γ;L1;β1 ` mod1 : Σ1

ΓT,X : |S1| ` mod2 ⇒ LT
2 ;κβ2

;S2 ` L2 locates α2 Γ,X : |Σ1|;L2;β2 s̀tat mod2 : Σ′2
` (L1; Σ1)� (L2; Σ′2) ; δ δΓ,X : |δΣ1|; δL2;β2 ` mod2 : Σ2

β2, α2 fresh ` δΣ1 + Σ2 ⇒ |Σ|
Γ; {||};β1, α1 ` (X =mod1) seals mod2 : |Σ1|

Complete Modules: Γ ` mod : Σ

ΓT ` mod ⇒ {||};κβ ;S Γ; {||};β ` mod : |Σ| β fresh β 6∈ fv(Σ)

Γ ` mod : |Σ|
(COMPL-DET)

Units: Γ ` mod : Φ

ΓT ` mod ⇒ LT;κβ ;S Γ;L;β ` mod : Σ ` L locates α α, β fresh

Γ ` mod : ∀α.∃β. (L; Σ)
(UNIT-DET)

Fig. 29. Deterministic Typing Rules for MixML

to pick R, R1, R2, L1, and L2 such that:

dom(R) = dom(L1) ∩ dom(L2) (common imports of both mod1 and mod2)
dom(R1) = dom(L1) \ dom(S2) (mod1 imports not present in mod2)
dom(R2) = dom(L2) \ dom(S1) (mod2 imports not present in mod1)
dom(L1) = dom(L1) ∩ dom(S2) \ dom(L2) (mod1 imports supplied by mod2)
dom(L2) = dom(L2) ∩ dom(S1) \ dom(L1) (mod2 imports supplied by mod1)

These choices can be enforced locally by adding the premises ΓT ` mod1 ⇒
RT ]RT

1 ] LT
1 ;κβ1 ; ΣT

1 and ΓT, X : |ΣT
1 | ` mod2 ⇒ RT ]RT

2 ] LT
2 ;κβ2 ; ΣT

2 to the rule, along
with the side condition (R1]L1) # (R2]L2), resulting in rule LINK-DET from Figure 29.
As for rule SEAL-DET, these premises also uniquely determine the split of the linear
variables from the context into β1 and β2.

9.3. Decidability and Uniqueness

That is almost all. Let `alg (and `algstat) stand for variants of our typing judgments where
the rules LINK, SEAL, COMPL, and UNIT, and the static rule EVAL, have been replaced
by their deterministic counterparts from Figures 23 and 29. When amended with tem-
plate computation, the MixML typing rules describe a 3-pass type-checking algorithm

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:72 A. Rossberg and D. Dreyer

(template computation, static pass, and main pass) that is still sound and complete
with respect to the declarative rules.

THEOREM 9.9 (COMPLETENESS OF ALGORITHMIC TYPE-CHECKING).
Suppose Γ;R;β is a well-formed context.

(1) If Γ ` exp : A, then Γ `alg exp : A.
(2) If Γ ` typ ; A, then Γ `alg typ ; A.
(3) If Γ;R;β ` mod : Σ, then Γ;R;β `alg mod : Σ.
(4) If Γ ` mod : Σ, then Γ `alg mod : Σ.
(5) If Γ ` mod : Φ, then Γ `alg mod : Φ.
(6) If Γ ` usig ; Φ, then Γ `alg usig ; Φ.

(And similarly, for the static judgments.)

PROOF. By induction on the derivation, using Theorems 9.8 and 9.3. Once more,
Parts 1 and 2 depend on the details of the core language, and we assume they hold for
all additional cases. �

Again, the inverse, soundness, is straightforward, because the algorithmic rules are
merely restrictions of the declarative ones:

THEOREM 9.10 (SOUNDNESS OF ALGORITHMIC TYPE-CHECKING).
Suppose Γ;R;β is a well-formed context.

(1) If Γ `alg exp : A, then Γ ` exp : A.
(2) If Γ `alg typ ; A, then Γ ` typ ; A.
(3) If Γ;R;β `alg mod : Σ, then Γ;R;β ` mod : Σ.
(4) If Γ `alg mod : Σ, then Γ ` mod : Σ.
(5) If Γ `alg mod : Φ, then Γ ` mod : Φ.
(6) If Γ `alg usig ; Φ, then Γ ` usig ; Φ.

(And similarly, for the static judgments.)

Because we have a sound and complete algorithm, we have proved decidability of
the MixML type system:

COROLLARY 9.11 (DECIDABILITY OF TYPE-CHECKING).
All MixML typing judgments are decidable.

Moreover, given this algorithm for computing the types of MixML modules that is
both complete and deterministic, we obtain our final theorem as a direct consequence:

THEOREM 9.12 (UNIQUENESS OF TYPES).

(1) If Γ ` exp ; A1 and Γ ` exp ; A2, then A1 = A2.
(2) If Γ ` typ ; A1 and Γ ` typ ; A2, then A1 = A2.
(3) If Γ;R;β ` mod : Σ1 and Γ;R;β ` mod : Σ2, then Σ1 = Σ2.
(4) If Γ ` mod : Σ1 and Γ ` mod : Σ1, then Σ1 = Σ2.
(5) If Γ ` mod : Φ1 and Γ ` mod : Φ2, then Φ1 = Φ2.
(6) If Γ ` usig ; Φ1 and Γ ` usig ; Φ2, then Φ1 = Φ2.

PROOF. Assume two different types exist for a module under a given context.
Because the type-checking algorithm defined by `alg is complete, it must be able to

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:73

compute both types. That is a contradiction because the algorithm is deterministic. �

10. RELATED AND FUTURE WORK
10.1. Module Systems
There is a large body of work on ML modules and mixin modules independently, some
of which we cited in the introduction. We primarily confine our discussion of related
work in this section to modularity mechanisms that attempt a synthesis of ML-style
and mixin-style features.

Mixin Modules for ML. Duggan and Sourelis [1996] were the first to integrate a no-
tion of mixin composition into ML modules with type components. They divide mixin
modules into three sections. Of these, only the middle section is “mixable,” and it
may only contain datatype and function bindings. In addition, their focus lies mainly
on merging datatype variants and function clauses in order to support extensible
datatypes. They consider neither opaque sealing nor hierarchical structures, and ex-
pressly disallow separate compilation.

Recursive Modules for ML. As mentioned in the introduction, there are several pro-
posals for extending ML with recursive modules [Crary et al. 1999; Russo 2001; Leroy
2003; Nakata and Garrigue 2006; Dreyer 2007b], but they do not handle separate com-
pilation in the general case. Both Moscow ML [Russo 2001] and OCaml [Leroy 2003]
support separate compilation for limited classes of recursive modules through the func-
tor mechanism. For example, if recursive modules in these languages do not contain
any internal uses of opaque sealing and only contain term components of pointed type
(i.e., functions or lazy suspensions), they can usually be separately compiled. This cov-
ers quite a few common cases, but is not a general solution. In particular, it cannot
handle our separate compilation example from Section 2 (Figures 2 and 3).

The reason for the restrictions on sealing boils down to the double vision problem
and the limitations of functor typing. First, none of these languages (with the excep-
tion of RMC [Dreyer 2007b]) properly handles double vision in general (see Dreyer
[2007b] for details). Second, even in RMC, if we try to break up a recursive module
rec (X : sig)mod into separately compiled functors of the form λ(X : sig).mod ′ (where
mod ′ is a substructure of mod ), then the connection between the abstract types defined
by mod ′ and their forward declaration in sig is lost once more. Consequently, double
vision again rears its ugly head when type-checking mod ′.

Ignoring separate compilation, MixML’s type system is closely based on RMC’s, and
our encoding of the rec construct for recursive modules yields essentially the same
semantics as in RMC.10 MixML’s transparent linking generalizes RMC’s rec construct,
while opaque linking generalizes RMC’s sealing operator. This generalization actually
simplifies the semantics of the language: the typing rules for transparent and opaque
linking are very similar—they match up premise for premise—whereas, in RMC, the
rules for recursive and sealed modules differ significantly.

Nakata and Garrigue [2006] define a language of recursive modules with a direct
type system in the style of Leroy [1994], which avoids elaboration of syntactic types
and signatures into semantic ones. Like us, they support definitions of opaquely recur-
sive types, but not transparently recursive ones. Their encoding of opaquely recursive

10We say “essentially” because MixML is more liberal than ML (and RMC) in certain respects. For example,
when matching a structure against a signature with a transparent type spec type t = int, ML will require
the structure to have a type component t equal to int; MixML will require only that, if the structure does
have a t component, then it is equal to int. While we view this departure from ML as a potentially useful
feature, it makes formal comparisons of expressiveness difficult.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:74 A. Rossberg and D. Dreyer

types is simpler than ours in that they do not need to insert new[·] as described in Sec-
tion 3. This is only because their type system does not attempt to handle the double
vision problem in the first place, so there is no need to manually override it.

In a recent paper, Im et al. [2011] devise a refinement of Nakata and Garrigue’s sys-
tem that addresses double vision using a type equivalence relation that allows cyclic
types and hence is not known to be decidable, similar to that of MixML’s internal
language LTG. They also give an algorithmically decidable variant of the relation for
the purpose of external type-checking, which, like MixML’s external type system, re-
jects transparent type cycles. Im et al. define the equivalence relation by resorting
to a bisimulation, which amounts to constructing a greatest fixed-point. In contrast,
our system sticks to the standard definition of type equivalence by the usual infer-
ence rules that yield a least fixed-point. While less general, this is sufficient for han-
dling recursive modules that disallow transparent type cycles. Our type system also
encompasses type constructors and respective βη-equivalences, which Im et al. do not
consider.

Units. Units were originally proposed by Flatt and Felleisen [1998] as a recursive
module extension to Scheme, which they extended with support for abstract type
components. Later work by Owens and Flatt [2006] extended units with hierarchi-
cal namespaces (called modules) and translucent type components. Like MixML, the
system presented in the latter paper (hereafter, OF) provides units as a form of mixin
module that may contain type components and nested structures, but excludes over-
riding. Units are first-class in OF, subsuming MixML’s higher-order units, but also
necessarily introducing subtyping into the core language (unlike our package exten-
sion, which confines unit signatures to package types, without infecting the rest of the
language).

In OF, as in other mixin-based languages, units may be recursively linked with each
other, but they are not hierarchically composable into other units. In contrast, MixML
modules are both hierarchically composable and recursively linkable. MixML units
(named in homage to Flatt’s units), which are just suspended modules, are composable
both hierarchically and recursively as well. For example, to recursively link units U1

and U2 we write [new U1 with new U2], as seen at the end of Section 2.
OF requires substantially more bookkeeping annotations from the programmer than

MixML. In particular, every unit and linking expression includes explicit specifications
of all its imports and exports, and all wiring needed in a linking step must be spelled
out explicitly. While this may offer some added flexibility, it becomes extremely burden-
some for encoding ML-style modules. Specifically, OF show how to emulate ML-like
modules, but in this approach modules require signature annotations on essentially
every subterm (for example, each functor application involves three distinct signa-
ture annotations). Moreover, it is not clear how a general recursive module construct
rec (X : sig)mod would be expressed in OF. In contrast, our MixML encoding of ML-
style modules is simple and direct and includes recursive modules.

Recursive DLLs. Duggan [2002] presents a language modelling recursive dynami-
cally linked libraries (DLLs). His units (called modules in his paper) are similar to OF,
but enriched with explicit support for sealing and an orthogonal construct for dynamic
typing. As in other mixin approaches, his modules are not hierarchically composable.
In addition, his system does not support transparent type definitions, only opaque
datatype definitions and sharing constraints between abstract types. As in MixML,
compound structures are built from atomic forms, but using a concatenation operator,
separate from mixin linking.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:75

Signature Operators. Ramsey et al. [2005] propose a variety of extensions to the ML
signature language. Some of them are expressible in MixML: signature composition
(andalso) directly corresponds to linking, and the adding and revealing constructs
for signature extension and refinement can also be encoded using linking. Moreover,
they propose a binder (as) that plays a role similar to the variable binding in MixML’s
linking construct. Other extensions presented in their paper, such as renaming and
removal of components, cannot be encoded directly in MixML. However, similar oper-
ators are present in classical CMS-style mixin modules [Ancona and Zucca 2002], and
we believe these could be readily incorporated into MixML.

Scala. Scala [Odersky et al. 2003; Odersky and Zenger 2005; Cremet et al. 2006]
is a language combining object-oriented mixin class composition with ML-style type
components. Being OO, objects and classes take the place of modules and units, re-
spectively. Moreover, objects are fully first-class citizens.

Scala’s mixin composition is, in some regards, very similar to our transparent link-
ing. However, there are also fundamental differences. Scala’s mixin composition op-
erates on classes, not on objects, and it is not hierarchical (although the underlying
νObj calculus does define linking on objects [Odersky et al. 2003]). It allows overrid-
ing of values, but on the other hand, restricts specialization of abstract fields to be
left-to-right.

Besides classes, which are nominal, Scala also provides structural object types. Be-
ing purely types, they are more restricted—e.g., they can only contain abstract defini-
tions (i.e., imports), and they cannot be instantiated to create objects. They also cannot
be recursive, nor can they be composed with each other without first being named.
Traits are yet another kind of unit-like mechanism: like classes, they are nominal and
can be composed, but like structural types, they cannot be instantiated.

Abstraction is only allowed over types, and while abstract types can be concretized
with classes, they cannot actually be treated as classes. That is, composition or ob-
ject instantiation is not possible anywhere where the concrete definition is not known.
Consequently, Scala cannot express the equivalent of unit imports and thus higher-
order units. Even first-order functors cannot be expressed directly in Scala, because
the language currently lacks the ability to handle dependent functions whose result
type depends on their argument value.11 Instead, they have to be emulated through
generic functions or classes, which requires manually separating the static and dy-
namic components of the argument.

Data abstraction can be achieved in at least two ways in Scala: either in the typical
OO-style, via the class mechanism and its access modifiers, or by ascribing a struc-
tural type to an existing object. The latter mechanism is very similar to ML-style seal-
ing, which we model using opaque linking. However, Scala provides this mechanism
without addressing the double vision problem. (There are alternative constructs, like
object declarations, that avoid double vision in specific cases.)

The success and practical impact of Scala was a major impetus for us to figure out
how to incorporate mixin composition into the ML module system.

J&. Also in the context of object-oriented programming, Nystrom et al. argue that
nested intersection (hierarchical composability) for nested classes is an essential fea-
ture for supporting compositional modular extensions [Nystrom et al. 2006; Nystrom
et al. 2004]. They devise J&, a mixin extension to a Java-like language that supports
this feature, and give a number of examples demonstrating its utility.

11Preliminary support is available at least for methods (which differ from functions), but as of version 2.8
of the language, this support is still flagged as experimental.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:76 A. Rossberg and D. Dreyer

The language does not support type components in the same way MixML or Scala
do. Nested and abstract class definitions (a.k.a. “virtual types”), which are only briefly
mentioned in the papers, can simulate type components to a certain extent, but be-
cause they can also be overridden covariantly, they do not actually express type equiv-
alences but merely upper bounds. Thus, it is unclear to us how J& could encode modu-
lar abstractions involving type sharing specifications. Lacking any form of dependent
types, even simpler functor-based abstractions may be difficult to express.

Data abstraction in J& is expressed using private members. There is no equivalent
to ML-style sealing and the compositional data abstraction it provides.

Newspeak. Newspeak is a more radical object-oriented language designed by Bracha
et al. [2010] that emphasizes nested classes as an important modularity mechanism.
It can express mixin composition through inheritance by making the “super” reference
late-bound. Because classes are first-class entities, this feature can also be applied to
encode hierarchical composition for nested classes, but by default, class members are
just plain overridden, like any other component.

As the authors note, Newspeak’s design strongly values “flexibility” over “semantic
consistency” [Bracha et al. 2010]. Consequently, it is neither typed nor does it currently
provide any form of data abstraction.

10.2. Elaboration and Internal Languages
Translation of Modules. The idea of defining language semantics, and especially the

semantics of module systems, in terms of a translation into an internal language (IL)
is well-established. Harper and Stone [2000] give a definition of full Standard ML
via translation into a dependently-typed IL named XML [Harper and Mitchell 1993],
extended with translucent sums [Harper and Lillibridge 1994]. A similar approach was
taken by Dreyer in his thesis on module systems [Dreyer 2005], where he targets an
even more expressive IL that features singleton kinds [Stone and Harper 2006; Dreyer
et al. 2003].

Together with Russo, and based on his previous work [Russo 1999b; 1998], we re-
cently demonstrated that, in fact, plain vanilla System F is sufficient as an IL for
conventional ML modules, and a relatively straightforward, compositional translation
is possible, in which structures are interpreted merely as existential packages and
functors as polymorphic functions [Rossberg et al. 2010].

Dreyer’s earlier work on RMC [Dreyer 2007b] already employed the same basic idea
as this “F-ing” approach, but with the necessary extensions to both the IL and the
translation to encompass recursive type abstraction. Dreyer observed that existential
types are no longer sufficient to represent type abstraction in the presence of recur-
sive structures. He devised the RTG calculus [Dreyer 2007a] to extend System F with
constructs for recursive type generation, and proposed destination-passing style (cf.
Section 8) for the translation of RMC. Our elaboration follows RMC’s very closely.

A variation of RTG was put forth by Montagu and Rémy [2009]. They recast RTG’s
type generation and definition constructs as open existential types that generalize the
usual System F notion of existential types. Similarly to LTG, they recast RTG’s ef-
fect system using linear typing contexts with a splitting (zipping) meta-operator. The
technical details differ greatly, though. In particular, they are focused primarily on
developing the core of a direct type system for modules which requires fewer typing
annotations than RTG or LTG. They do not employ general substructural types, and
they do not support general destination-passing style functions as RTG and LTG do.

Linear Types and Kinds. Ignoring some stylistic differences, the type and term level
of LTG, and its way of tracking linearity, is largely a subset of Ahmed, Fluet, & Mor-
risett’s more comprehensive language λURAL [Ahmed et al. 2005], which in turn is based

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:77

on Walker’s work on substructural type systems [Walker 2005]. LTG is limited to only
two modes and has no mode polymorphism. However, the semantics of LTG references
is different from the λrefURAL-calculus, the extension of λURAL with references: in the
latter, a linear reference is one that is not aliased, whereas in LTG, linearity provides
the one-shot write capability to an (uninitialized) reference, that may still be aliased
for reading. We are not aware of other work employing linear typing of references in
this particular way.

Mazurak et al. [2010] present System F◦, a linear version of System F that sports a
kind ◦ of linear types. But the meaning of linear kindedness in F◦ is completely differ-
ent than in our system: in F◦ it is merely an elegant way to make mode annotations on
most types implicit, by deriving them as kind information. The kind ◦ does not induce
any linearity on the use of a type itself, as it does in LTG.

The use of a substructural kind system seems to be a novelty of our system. It consol-
idates the ad hoc linearity in Dreyer’s RTG [Dreyer 2007a], leading to a more compo-
sitional calculus, and rendering the treatment of undefined type names very similar to
that of uninitialized references. RTG has no references and tracks definedness of type
names by a simple linear “effect system” for defining types. These effects are confined
to the typing judgment and are not expressible in the types themselves. Consequently,
it is not possible to abstract over linear objects in a first-class manner, and RTG has
to provide specialised constructs, like a type of “destination-passing-style functions” to
make up for that. See Section 7 for more discussion of the differences from RTG.

Linearity in our kind system is degenerate in the sense that there are no actual in-
troduction or elimination forms for linear kinds on the type level itself. We considered
including substructural arrow kinds, so that linear kinds could be consumed by type
constructors. But as already mentioned in Section 7.2, we had no actual use for such
functionality in the context of MixML. That said, it would be a natural extension to
LTG that would require no significant changes to its setup of moded kinds.

10.3. Future Work
We believe that MixML already provides a fairly complete basis for a practical module
system. To further expand its utility, though, we are interested in extending it with
support for OCaml-style applicative functors [Leroy 1995] and type classes [Wadler
and Blott 1989; Dreyer et al. 2007], as well as dynamic units [Rossberg 2006]. Integrat-
ing “applicative units” is particularly challenging, because it most likely will involve
a form of existential quantifier hoisting, as for applicative functor signatures [Russo
1998], that does not readily fit into our elaboration framework. Existing encodings of
type classes into ML modules should be comparatively easy to adapt to MixML, based
on the encodings of traditional module features that we have given (especially func-
tors). Likewise, we do not expect any significant hurdle for extending the language
with forms of dynamic type analysis, as required for expressing dynamic modules. In
fact, the type generation facility of LTG and RTG can already be viewed as a refine-
ment of the respective construct needed for supporting safe type abstraction in the
presence of dynamic casts [Rossberg 2003; Neis et al. 2011].

On the practical side, we would like to get MixML implemented in one of the existing
ML systems. So far, we only have built a prototype interpreter for a language based
on MixML [Rossberg and Dreyer 2008], which includes built-in support for most of
the encodings given in Section 2. A mature implementation will likely raise additional
questions, particularly with respect to optimizations, as well as the concrete realiza-
tion of separate compilation. For example, a realistic implementation should avoid the
repeated recursive structure copying that is performed for each and every variable use
in our rules, and also by our simplistic translation of merging. It should not be difficult
to get rid of the copying for simple cases, i.e., where no unit abstraction/instantiation

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:78 A. Rossberg and D. Dreyer

is involved: all that seems to be needed is suitable compile-time partial evaluation of
the initializer terms that our translation produces. In particular, that would take care
of our (otherwise very expensive) encoding of n-ary structures through repeated use
of linking. However, such partial evaluation is not possible when linking units across
compilation boundaries, unless the implementation also has suitable support for cross-
compilation inlining. It remains to be seen how challenging these problems turn out in
practice.

Finally, a frequent question raised about languages defined by elaboration seman-
tics is whether one could define them also via a “direct” semantics and then prove
the two semantics equivalent. Our use of an elaboration semantics is by now a stan-
dard approach to defining the semantics of an ML-like language (cf. Harper and Stone
[2000] for Standard ML, or the “F-ing modules” approach [Rossberg et al. 2010]). While
elaboration semantics means that one can only understand the behavior of MixML pro-
grams in terms of the behavior of their evidence translations, our feeling is that it is
nevertheless clearer and offers more insight into the type-theoretic underpinnings of
the language than an ad hoc direct semantics.

The fact of the matter, though, is that we have no idea how to provide a direct seman-
tics for the MixML language—some amount of elaboration seems essential for both the
static and the dynamic semantics. Statically, elaborating source-language signatures
into richer internal types with some form of existential quantification is necessary for
addressing the so-called avoidance problem for local types [Dreyer et al. 2003; Harper
and Pierce 2005], at least if one wishes to avoid undesirable restrictions on module
projection and functor application (which in MixML is encoded via projection). Dy-
namically, we believe that any suitable operational semantics of recursive linking will
require allocating the skeleton of the fully linked module before evaluating the defining
expression to initialize it. However, in a language as expressive as MixML, the shape
of that skeleton cannot be determined without the environment and type information
inferred by the static semantics (or at least some approximation thereof, such as the
“templates” in Section 9.2). In short, we conjecture that a direct semantics for MixML
is not possible, and that elaboration semantics is the only viable way of defining it.

Acknowledgments. We thank Scott Kilpatrick and the anonymous reviewers for
many thoughtful comments and questions. We especially thank the reviewer who
helped to uncover a serious flaw in the proof of consistency (Section 7.5) given in an
earlier draft of this article.

A. PROOF OF SOUNDNESS OF THE TRANSLATION
The proof for Theorem 8.7 proceeds by simultaneous induction on the derivation.
Throughout the proof, we take the notation τ |β| to mean τU if β is empty and τ L other-
wise, with the following auxiliary lemma:

— If Ξ, βL ` e : τ |β| and Ξ � U, then Ξ ` λβL.e : (∀Lβ.τ)U.
— If Ξ ` e : (∀Lβ.τ)ι and βU ⊆ ∆ of Ξ, then Ξ ∗ βL ` e β : τ |β|.

(See Figure 12 for the definition of the syntax ∀Lβ.τ .)
Most cases for the main proof are fairly straightforward, the interesting ones are the

following.

— Rule LINK
;

:
— let Ξ = ∆ ∗ βL

1 ∗ βL
2 ; ε; Γ◦

— to show: Ξ ` e : (Σ◦ → {})|β1,β2|

— since ∆ ` (Γ;R]R1 ]R2;β1, β2) ⇑, we know that βU
1 , β

U
2 ∈ ∆

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:79

— let ∆′ = ∆, αU
1 , α

U
2

— first show that ∆ ` δ◦ : ∆′ and ∆ ∗ βL
1 ` δ◦ : ∆′ ∗ βL

1

— by Lemma 8.3 (9, 1, 8), ∆′ ` R ]R1 ] L1 ⇑,
and thus ∆′ ` (Γ;R]R1 ] L1;β1) ⇑

— by Theorem 8.1 and Lemma 8.4, ∆′ ` Σ1 ⇑, and thus, ∆′ ` Γ,X1:Σ1 ⇑
— by Lemma 8.3 (9, 1, 8), ∆′ ` R ]R2 ] L2 ⇑,

and thus ∆′ ` (Γ;R]R2 ] L2;β2) ⇑
— by Lemma 8.4, ∆′ ` Σ′2 ⇑
— obviously, ∆ ` (Γ;R;β′) ⇑ for any β′ ⊆ β1, β2

— by induction (10), ∆ ∗ β′L ` δ◦ : ∆′ ∗ β′L for any β′ ⊆ β1, β2

— now show that ∆ ∗ βL
1 ; ε; Γ◦ ` δ◦e1 : ((δΣ1)◦ → {})|β1|

— as above, ∆′ ` R ]R1 ] L1 ⇑, hence ∆′ ` (Γ;R]R1 ] L1;β1) ⇑
— by induction (3), ∆′ ∗ βL

1 ; ε; Γ◦ ` e1 : (Σ◦1 → {})|β1|

— by substitution and Lemma 8.5, ∆ ∗ βL
1 ; ε; (δΓ)◦ ` δ◦e1 : ((δΣ1)◦ → {})|β1|

— since α1, α2 fresh, δΓ = Γ

— then show that ∆ ∗ βL
2 ; ε; (Γ,X1:|δΣ1|)◦ ` e2 : (Σ◦2 → {})|β2|

— like above, ∆′ ` Σ1 ⇑
— by Lemma 8.3 (10, 3), ∆ ` |δΣ1| ⇑, and hence, ∆ ` Γ,X1:|δΣ1| ⇑
— by Lemma 8.3 (9, 1, 8, 10), ∆ ` R ]R2 ] δL2 ⇑,

and hence, ∆ ` (Γ,X1:|δΣ1|;R]R2 ] δL2;β2) ⇑
— by induction (3), ∆ ∗ βL

2 ; ε; (Γ,X1:|δΣ1|)◦ ` e2 : (Σ◦2 → {})|β2|

— now for the coercions f1 and f2:
— as above, ∆′ ` Σ1 ⇑
— by Lemma 8.3 (10), ∆ ` δΣ1 ⇑
— as above, ∆ ` (Γ,X1:|δΣ1|;R]R2 ] δL2;β2) ⇑
— by Theorem 8.1 and Lemma 8.4, ∆ ` Σ2 ⇑
— by induction (7), ∆; ε; ε ` f1 : Σ′′1

◦ → (δΣ1)◦ and ∆; ε; ε ` f2 : Σ′′2
◦ → Σ◦2 with

Σ◦ = Σ′′1
◦ ∗ Σ′′2

◦

— let Ξ1 = ∆; ε; Γ◦, x : Σ◦

and Ξ11 = ∆; ε; Γ◦, x : Σ′′1
◦ and Ξ12 = ∆; ε; Γ◦, x : Σ′′2

◦

— by Lemma 8.5, Ξ11 ∗ Ξ12 = Ξ1

— by weakening and LTG typing rules, Ξ11 ` f1 x : (δΣ1)◦ and Ξ12 ` f2 x : Σ◦2
— let Ξ2 = ∆ ∗ βL

1 , β
L
2 ; ε; Γ◦, x : Σ−◦

and Ξ21 = ∆ ∗ βL
1 ; ε; Γ◦, x : Σ−◦, X1 : |δΣ1|◦, X2 : Σ−◦2

and Ξ22 = ∆ ∗ βL
2 ; ε; Γ◦, x : Σ−◦, X1 : |δΣ1|−◦, X2 : Σ◦2

— by weakening and LTG typing rules, Ξ21 ` δ◦e1 X1 : {} and Ξ22 ` e2 X2 : {}
— by Lemma 8.5, Ξ21 ∗ Ξ22 = Ξ2,X1 : |δΣ1|◦,X2 : Σ◦2
— and thus, Ξ2,X1 : |δΣ1|◦,X2 : Σ◦2 ` δ◦e1 X1; e2 X2 : {}
— by Lemma 8.5, Ξ1 ∗ Ξ2 = Ξ, x : Σ◦

— by LTG typing rules, Ξ ` e : (Σ◦ → {})|β1,β2|

— Rule SEAL
;

:
— let Ξ = ∆ ∗ βL

1 ∗ αL
1 ; ε; Γ◦

— to show: Ξ ` e : (|Σ1|◦ → {})|β1,α1|

— since ∆ ` (Γ; {||};β1, α1) ⇑, we know that βU
1 , α

U
1 ∈ ∆

— let ∆1 = ∆, βU
2 and ∆2 = ∆1, α

U
2 and ∆0 = ∆1 − α1

— let δ1 = {α1 7→ δα1} and Ψ = α1:=δ◦α1

— first show that ∆1 ∗ βL
1 ; Ψ; Γ◦ ` e1 : (Σ◦1 → {})|β1|

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:80 A. Rossberg and D. Dreyer

— by Lemma 8.3 (9, 1), ∆1 ` L1 ⇑, and hence, ∆1 ` (Γ;L1;β1) ⇑
— by induction (3) and weakening, ∆1 ∗ βL

1 ; Ψ; Γ◦ ` e1 : (Σ◦1 → {})|β1|

— then show that ∆1 ∗ βL
2 ; Ψ; (Γ,X1:|Σ1|)◦ ` e2 : (Σ◦2 → {})|β2|

— as above, ∆1 ` (Γ;L1;β1) ⇑
— by Theorem 8.1 and Lemma 8.4, ∆1 ` Σ1 ⇑
— by Lemma 8.3 (10, 3, 12), ∆0 ` |δ1Σ1| ⇑ and ∆0 ` δ1Γ ⇑,

and hence, ∆0 ` δ1Γ,X1:|δ1Σ1| ⇑
— because α2 fresh and ∆1 ` Σ1 ⇑, we have δΓ = δ1Γ and δΣ1 = δ1Σ1

— so, ∆0 ` δΓ,X1:|δΣ1| ⇑
— by Lemma 8.3 (9, 1, 10), ∆2 ` L2 ⇑ and then ∆0 ` δL2 ⇑
— thus, ∆0 ` (δΓ,X1:|δΣ1|; δL2;β2) ⇑
— by induction (3), ∆0 ∗ βL

2 ; ε; (δΓ,X1:|δΣ1|)◦ ` e2 : (Σ◦2 → {})|β2|

— that is, ∆0 ∗ βL
2 ; ε; (δ1Γ,X1:|δ1Σ1|)◦ ` e2 : (Σ◦2 → {})|β2|

— by Theorem 8.1 and Lemma 8.4, ∆0 ` Σ2 ⇑, and hence, Σ2 = δ1Σ2

— by Lemma 7.4, fv(e2) ∩ α1 = ∅, and hence, e2 = δ◦1e2
— thus, ∆0 ∗ βL

2 ; ε; (δ1Γ,X1:|δ1Σ1|)◦ ` δ◦1e2 : ((δ1Σ2)◦ → {})|β2|

— obviously, ∆0 ∗ βL
2 ; ε ` δ◦1 : ∆1 ∗ βL

2 ; Ψ

— by Lemma 7.15, ∆1 ∗ βL
2 ; Ψ; (Γ,X1:|Σ1|)◦ ` e2 : (Σ◦2 → {})|β2|

— now for the coercions f1 and f2:
— like above, ∆0 ` δΣ1 ⇑ and ∆0 ` Σ2 ⇑
— by induction (7), ∆0; ε; ε ` f1 : Σ′′1

◦ → (δΣ1)◦ and ∆0; ε; ε ` f2 : Σ′′2
◦ → Σ◦2 with

|Σ|◦ = Σ′′1
◦ ∗ Σ′′2

◦

— as above, δΣ1 = δ1Σ1 and Σ2 = δ1Σ2

— by Lemma 8.4, ∆0 ` |Σ| ⇑, and so |Σ| = |δ1Σ| and Σ′′1 = δ1Σ′′1 and Σ′′2 = δ1Σ′′2
— by Lemma 7.4, fv(f1) ∩ α1 = fv(f2) ∩ α1 = ∅, and hence, f1 = δ◦1f1 and f2 = δ◦1f2
— obviously, ∆0; ε ` δ◦1 : ∆1; Ψ
— by Lemma 7.15, ∆1; Ψ; ε ` f1 : Σ′′1

◦ → Σ◦1 and ∆1; Ψ; ε ` f2 : Σ′′2
◦ → Σ◦2

— let Ξ1 = ∆1; Ψ; Γ◦, x : |Σ1|−◦, x′ : |Σ|◦
and Ξ11 = ∆1; Ψ; Γ◦, x : |Σ1|−◦, x′ : Σ′′1

◦

and Ξ12 = ∆1; Ψ; Γ◦, x : |Σ1|−◦, x′ : Σ′′2
◦

— by Lemma 8.5, Ξ11 ∗ Ξ12 = Ξ1

— by weakening and LTG typing rules, Ξ11 ` f1 x′ : Σ◦1 and Ξ12 ` f2 x′ : Σ◦2
— let Ξ2 = ∆1 ∗ βL

1 ∗ βL
2 ; Ψ; Γ◦, x : |Σ1|◦, x′ : |Σ|−◦

and Ξ3 = Ξ2,X1 : Σ◦1,X2 : Σ2
◦

and Ξ31 = ∆1; Ψ; Γ◦, x : |Σ1|◦, x′ : |Σ|−◦, X1 : Σ−◦1 , X2 : Σ−◦2
and Ξ32 = ∆1 ∗ βL

1 ; Ψ; Γ◦, x : |Σ1|−◦, x′ : |Σ|−◦, X1 : Σ◦1, X2 : Σ−◦2
and Ξ33 = ∆1 ∗ βL

2 ; Ψ; Γ◦, x : |Σ1|−◦, x′ : |Σ|−◦, X1 : Σ−◦1 , X2 : Σ◦2
— by Lemma 8.5, Ξ3 = Ξ31 ∗ Ξ32 ∗ Ξ33

— by LTG typing rules, Ξ31 ` X1 : Σ−◦1 and Ξ31 ` x : |Σ1|◦
— by Lemma 8.5 (7), Ξ31 ` X1 : |Σ1|−◦
— like above, ∆1 ` |Σ1| ⇑
— by Lemma 8.6 (2), Ξ31 ` Copy(X1, x : |Σ1|) : {}
— by weakening and LTG typing rules, Ξ32 ` e1 X1 : {} and Ξ33 ` e2 X2 : {}
— and thus, Ξ3 ` Copy(X1, x : |Σ1|); e1 X1; e2 X2 : {}
— by Lemma 8.5, Ξ1 ∗ Ξ2 = ∆0 ∗ βL

1 ∗ βL
2 ; Ψ; Γ◦, x : |Σ1|◦, x′ : |Σ|◦

— by LTG typing rules, Ξ1 ∗ Ξ2 ` letX1 = . . . ,X2 = . . . in . . . : {}
— because ∆0 ` |Σ| ⇑, also ∆1 ` |Σ| ⇑
— by Lemma 8.6 (1) and weakening, ∆1; Ψ; Γ◦, x : |Σ1|−◦ ` Create(|Σ|) : |Σ|◦

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:81

— by LTG typing rules, ∆1 ∗ βL
1 ∗ βL

2 ; Ψ; Γ◦, x : |Σ1|◦ ` letx′ = . . . in . . . : {}
— by LTG typing rule, ∆1 ∗ βL

1 ∗ βL
2 ∗ αL

1 ; ε; Γ◦, x : |Σ1|◦ ` def α1:=δ◦α1 in . . . : {}
— by LTG typing rule, ∆ ∗ βL

1 ∗ αL
1 ; ε; Γ◦, x : |Σ1|◦ ` new β2 in . . . : {}

— by LTG typing rule, ∆ ∗ βL
1 ∗ αL

1 ; ε; Γ◦ ` e : (|Σ1|◦ → {})|β1,α1|

— Rule NEW
;

:
— let Ξ = ∆; ε; Γ◦

— to show: Ξ ∗ δ◦βL ` λx:(δΣ)◦. (! e) δ◦α δ◦β x : ((δΣ)◦ → {})|β|
— by induction (4) and weakening, Ξ, x:(δΣ)−◦ ` e : (?(∀Uα.∀Lβ.Σ◦ → {}))U

— by Theorem 8.1 and Lemma 8.4, ∆ ` [[∀α.∃β. (L; Σ)]]+ ⇑
— hence, ` L locates α
— consequently, fv(δα) = fv(δL)
— because ∆ ` δL ⇑ and ∆ ` δβ ⇑, we know fv(δL, δβ) ⊆ dom(∆)
— by implicit assumptions, ∆ � U and δ kind-preserving
— hence, ∆ ` δ◦α : κU

α and ∆ ∗ δ◦βL ` δ◦β : κL
β

— by Lemma 8.5,
(Ξ ∗ δ◦βL, x : (δΣ)◦) = (Ξ, x : (δΣ)−◦) ∗∆ ∗ (∆ ∗ δ◦βL) ∗ (Ξ, x : (δΣ)◦)

— hence, by LTG typing rules and the auxiliary lemma,
Ξ ∗ δ◦βL, x:(δΣ)◦ ` (! e) δ◦α δ◦β x : {}

— Rule UNPACK
;

:
— Analogous to the previous case.

— Rule COMPL
;

:
— let Ξ = ∆; ε; Γ◦

— to show: Ξ ` new β in letx= Create(|Σ|) in e x;x : |Σ|−◦
— obviously, ∆, βU ` (Γ; {||};β) ⇑ for fresh β

— by Lemma 8.6 (1) and weakening, Ξ, βU ` Create(|Σ|) : |Σ|◦

— by induction (3) and weakening, Ξ, βL, x:|Σ|−◦ ` e : (|Σ|◦ → {})|β|
— by Lemma 8.5,

Ξ, βL, x:|Σ|◦ = (Ξ, βL, x:|Σ|−◦) ∗ (Ξ, βU, x:|Σ|◦) ∗ (Ξ, βU, x:|Σ|−◦)
— hence, by LTG typing rules, Ξ, βL, x:|Σ|◦ ` e x;x : |Σ|−◦
— the goal follows by further straightforward application of LTG typing rules

— Rule UNIT
;

:
— to show: ∆; ε; Γ ` λαU.λβL.e : (∀Uα.∀Lβ.(Σ◦ → {}))U

— by Lemma 8.3 (9, 1), ∆, α, β ` L ⇑, and so ∆, α, β ` (Γ;L;β) ⇑
— by induction (3), ∆, αU, βL; ε; Γ ` e : (Σ◦ → {})|β|
— by LTG typing rules and the auxiliary lemma,

∆; ε; Γ ` λαU.λβL.e : (∀αU.(∀Lβ.(Σ◦ → {}))U)U

— Rule MATCH
;

:
— to show: ∆; ε; ε ` f : (∀Uα1.∀Lβ1. (Σ

◦
1 → {}))U → (∀Uα2.∀Lβ2. (Σ

◦
2 → {}))U

— let ∆′ = ∆, αU
2 , β

U
1 and ∆′′ = ∆′, αU

1 , β
U
2

— let Γ = y : (∀Uα1.∀Lβ1. (Σ
◦
1 → {}))U and Ξ = ∆′; ε; δ◦Γ

— first show ∆′ ` δ◦ : ∆′′ and ∆′ ∗ βL
1 ` δ◦ : ∆′′ ∗ βL

1

— by inverting ∆ ` Φ1 ⇑, we know ∆, αU
1 , β

U
1 ` Σ1 ⇑ and L−1 locates α1 and L−1 ⊆ Σ1

— by inverting ∆ ` Φ2 ⇓, we know ∆, αU
2 , β

U
2 ` Σ2 ⇓ and L−2 locates α2 and L−2 ⊆ Σ2

and L+
2 locates β2 and L+

2 ⊆ Σ2

— by Lemma 8.3 (1), ∆, αU
2 , β

U
2 ` Σ2 ⇑,

— consequently, also ∆′′ ` Σ1 ⇑ and ∆′′ ` Σ2 ⇑

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:82 A. Rossberg and D. Dreyer

— by induction (10), ∆′ ` δ◦ : ∆′′

— obviously, also ∆′ ∗ βL
1 ` δ◦ : ∆′′ ∗ βL

1

— then consider the coercions f1 and f2:
— by Lemma 8.3 (10, 4), ∆′ ` δΣ1 ⇑ and ∆′ ` −δΣ2 ⇑
— by induction (7), |Σ|◦ = Σ′1

◦ ∗ Σ′2
◦

with ∆′; ε; ε ` f1 : Σ′1
◦ → (δΣ1)◦ and ∆′; ε; ε ` f2 : Σ′2

◦ → (−δΣ2)◦

— let Ξ1 = Ξ, x2 : (δΣ2)◦, x : Σ′2
◦

and Ξ11 = Ξ, x2 : (δΣ2)−◦, x : Σ′2
◦

and Ξ12 = Ξ, x2 : (δΣ2)◦, x : Σ′2
−◦,

and Ξ2 = Ξ ∗ βL
1 , x2 : (δΣ2)−◦, x : Σ′1

◦

and Ξ21 = Ξ ∗ βL
1 , x2 : (δΣ2)−◦, x : Σ′1

−◦

and Ξ22 = Ξ, x2 : (δΣ2)−◦, x : Σ′1
◦,

so that Ξ1 = Ξ11 ∗ Ξ12 and Ξ2 = Ξ21 ∗ Ξ22 and Ξ1 ∗ Ξ2 = Ξ, x2 : (δΣ2)◦, x : |Σ|◦
— by weakening and LTG typing rules, Ξ11 ` f2 x : (−δΣ2)◦ and Ξ12 ` x2 : (δΣ2)◦

— by Lemma 8.6 (2), Ξ1 ` Copy(f2 x, x2 : δΣ2) : {}U

— by LTG typing rules, the auxiliary lemma, and weakening,
Ξ21 ` y δ◦α1 β1 : ((δΣ1)◦ → {})|β1| and Ξ22 ` f1 x : (δΣ1)◦

— by LTG typing rules, Ξ2 ` y δ◦α1 β1 (f1 x) : {}
— by Lemma 8.4 (7), ∆′ ` |Σ| ⇑
— by Lemma 8.6 (1) and weakening, Ξ, x2 : (δΣ2)−◦ ` Create(|Σ|) : |Σ|◦

— by LTG typing rules, Ξ ∗ βL
1 , x2 : (δΣ2)◦ ` letx=Create(|Σ|) in . . . : {}

— by Lemma 7.4, fv(f1)∩dom(δ) = fv(f2)∩dom(δ) = ∅, and so f1 = δ◦f1 and f2 = δ◦f2
— by Lemma 8.6 (3), Create(|Σ|) = Create(|δΣ|)
— consequently, Ξ ∗ βL

1 , x2 : (δΣ2)◦ ` δ◦(letx=Create(|Σ|) in . . .) : {}
— let Ψ = β2:=δ◦β2
— since dom(δ◦) ∩ dom(∆′) = ∅, it holds that δ◦δ◦τ = δ◦τ for all τ
— consequently, obviously ε ` δ◦ : Ψ, and so ∆′ ∗ βL

1 ; ε ` δ◦ : ∆′′ ∗ βL
1 ; Ψ

— by Lemma 7.15, ∆′ ∗ βL
1 , β

U
2 ; Ψ; Γ, x2 : Σ◦2 ` letx=Create(|Σ|) in . . .) : {}

— by LTG typing rules, ∆′ ∗ βL
1 , β

L
2 ; ε; Γ, x2 : Σ◦2 ` def β2:=δ◦β2 in . . . : {}

— by LTG typing rules, ∆, αU
2 , β

L
2 ; ε; Γ, x2 : Σ◦2 ` new β1 in . . . : {}

— by LTG typing rules and the auxiliary lemma,
∆; ε; Γ ` λαU

2 . λβ
L
2 . λx2:Σ◦2. . . . : (∀Uα2.∀Lβ2.Σ

◦
2 → {})U

— by LTG typing rule,
∆; ε; ε ` f : (∀Uα1.∀Lβ1. (Σ

◦
1 → {}))U → (∀Uα2.∀Lβ2. (Σ

◦
2 → {}))U

REFERENCES
ABADI, M. AND CARDELLI, L. 1996. A Theory of Objects. Springer-Verlag, New York, NY, USA.
AHMED, A. 2006. Step-indexed syntactic logical relations for recursive and quantified types. In European

Symposium on Programming (ESOP). Springer-Verlag, Vienna, Austria.
AHMED, A., FLUET, M., AND MORRISETT, G. 2005. A step-indexed model for substructural state. In Inter-

national Conference on Functional Programming (ICFP). ACM Press, Tallinn, Estonia.
ANCONA, D., FAGORZI, S., MOGGI, E., AND ZUCCA, E. 2003. Mixin modules and computational effects. In

International Colloquium on Automata, Languages and Programming (ICALP). Springer-Verlag, Eind-
hoven, The Netherlands.

ANCONA, D. AND ZUCCA, E. 1998. A theory of mixin modules: Basic and derived operators. Mathematical
Structures in Computer Science 8, 4, 401–446.

ANCONA, D. AND ZUCCA, E. 2002. A calculus of module systems. Journal of Functional Programming 12, 2,
91–132.

APPEL, A. AND MCALLESTER, D. 2001. An indexed model of recursive types for foundational proof-carrying
code. TOPLAS 23, 5, 657–683.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Mixin’ Up the ML Module System A:83

BRACHA, G., AHE, P., BYKOV, V., KASHAI, Y., MADDOX, W., AND MIRANDA, E. 2010. Modules as objects in
Newspeak. In European Conference on Object-Oriented Programming (ECOOP). ACM Press, Maribor,
Slovenia.

BRACHA, G. AND COOK, W. 1990. Mixin-based inheritance. In Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA). ACM Press, Ottawa, Canada.

BRACHA, G. AND LINDSTROM, G. 1992. Modularity meets inheritance. In International Conference on Com-
puter Languages (ICCL). IEEE, Oakland, California, USA.

CRARY, K., HARPER, R., AND PURI, S. 1999. What is a recursive module? In Principles of Language Design
and Implementation (PLDI). ACM Press, Atlanta, Georgia, USA.

CREMET, V., GARILLOT, F., LENGLET, S., AND ODERSKY, M. 2006. A core calculus for scala type checking.
In Mathematical Foundations of Computer Science (MFCS). Springer-Verlag, Stará Lesná, Slovakia.

DREYER, D. 2004. A type system for well-founded recursion. In Principles of Programming Languages
(POPL). ACM Press, Venice, Italy.

DREYER, D. 2005. Understanding and evolving the ML module system. Ph.D. thesis, Carnegie Mellon Uni-
versity, Pittsburgh, PA.

DREYER, D. 2007a. Recursive type generativity. Journal of Functional Programming 17, 4&5, 433–471.
DREYER, D. 2007b. A type system for recursive modules. In International Conference on Functional Pro-

gramming (ICFP). ACM Press, Freiburg, Germany.
DREYER, D., CRARY, K., AND HARPER, R. 2003. A type system for higher-order modules. In Principles of

Programming Languages (POPL). ACM Press, New Orleans, Louisiana, USA.
DREYER, D., HARPER, R., AND CHAKRAVARTY, M. M. T. 2007. Modular type classes. In Principles of Pro-

gramming Languages (POPL). ACM Press, Nice, France.
DREYER, D. AND ROSSBERG, A. 2008. Mixin’ up the ML module system. In International Conference on

Functional Programming (ICFP). ACM Press, Victoria, Canada.
DUGGAN, D. 2002. Type-safe linking with recursive DLLs and shared libraries. ACM Transactions on Pro-

gramming Languages and Systems 24, 6, 711–804.
DUGGAN, D. AND SOURELIS, C. 1996. Mixin modules. In International Conference on Functional Program-

ming (ICFP). ACM Press, Philadelphia, Pennsylvania, USA.
FLATT, M. AND FELLEISEN, M. 1998. Units: Cool modules for HOT languages. In Programming Language

Design and Implementation (PLDI). ACM Press, Montreal, Canada.
HARPER, R. 2011. Programming in Standard ML. Carnegie Mellon University, Pittsburgh, Pennsylvania,

USA. Working draft.
HARPER, R. AND LILLIBRIDGE, M. 1994. A type-theoretic approach to higher-order modules with sharing.

In Principles of Programming Languages (POPL). ACM Press, Portland, Oregon, USA.
HARPER, R. AND MITCHELL, J. C. 1993. On the type structure of Standard ML. ACM Transactions on

Programming Languages and Systems 15, 2, 211–252.
HARPER, R., MITCHELL, J. C., AND MOGGI, E. 1990. Higher-order modules and the phase distinction. In

Principles of Programming Languages (POPL). ACM Press, San Francisco, California, USA.
HARPER, R. AND PIERCE, B. C. 2005. Design considerations for ML-style module systems. In Advanced

Topics in Types and Programming Languages, B. C. Pierce, Ed. MIT Press, Cambridge, Massachusetts,
USA.

HARPER, R. AND STONE, C. 2000. A type-theoretic interpretation of Standard ML. In Proof, Language, and
Interaction: Essays in Honor of Robin Milner, G. Plotkin, C. Stirling, and M. Tofte, Eds. MIT Press,
Cambridge, Massachusetts, USA.

HIRSCHOWITZ, T. AND LEROY, X. 2005. Mixin modules in a call-by-value setting. ACM Transactions on
Programming Languages and Systems 27, 5, 857–881.

IM, H., NAKATA, K., GARRIGUE, J., AND PARK, S. 2011. A syntactic type system for recursive modules. In
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA). ACM Press, Portland,
Oregon, USA.

JONES, M. P. 1996. Using parameterized signatures to express modular structure. In Principles of Program-
ming Languages (POPL). ACM Press, St. Petersburg Beach, Florida, USA.

LEROY, X. 1994. Manifest types, modules, and separate compilation. In Principles of Programming Lan-
guages (POPL). ACM Press, Portland, Oregon, USA.

LEROY, X. 1995. Applicative functors and fully transparent higher-order modules. In Principles of Program-
ming Languages (POPL). ACM Press, San Francisco, California, USA.

LEROY, X. 2000. A modular module system. Journal of Functional Programming 10, 3, 269–303.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:84 A. Rossberg and D. Dreyer

LEROY, X. 2003. A proposal for recursive modules in Objective Caml. Available online at the following URL:
http://caml.inria.fr/pub/papers/xleroy-recursive modules-03.pdf.

MACQUEEN, D. 1984. Modules for Standard ML. In LISP and Functional Programming (LFP). ACM Press,
Austin, Texas, USA.

MAZURAK, K., ZHAO, J., AND ZDANCEWIC, S. 2010. Lightweight linear types in System F◦. In Types in
Language Design and Implementation (TLDI). ACM Press, Madrid, Spain.

MILNER, R., TOFTE, M., HARPER, R., AND MACQUEEN, D. 1997. The Definition of Standard ML (Revised).
MIT Press, Cambridge, Massachusetts, USA.

MONTAGU, B. AND RÉMY, D. 2009. Modeling abstract types in modules with open existential types. In
Principles of Programming Languages (POPL). ACM Press, Savannah, GA, USA, 354–365.

MOON, D. A. 1986. Object-oriented programming with Flavors. In Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA). ACM Press, Portland, Oregon, USA.

NAKATA, K. AND GARRIGUE, J. 2006. Recursive modules for programming. In International Conference on
Functional Programming (ICFP). ACM Press, Portland, Oregon, USA.

NEIS, G., DREYER, D., AND ROSSBERG, A. 2011. Non-parametric parametricity. Journal of Functional
Programming 21, 4 & 5, 497–562.

NYSTROM, N., CHONG, S., AND MYERS, A. 2004. Scalable extensibility via nested inheritance. In Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA). ACM Press, Vancouver,
Canada.

NYSTROM, N., QI, X., AND MYERS, A. 2006. J&: Nested intersection for scalable software composition. In
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA). ACM Press, Portland,
Oregon, USA.

ODERSKY, M., CREMET, V., RÖCKL, C., AND ZENGER, M. 2003. A nominal theory of objects with dependent
types. In European Conference on Object-Oriented Programming (ECOOP). ACM Press, Darmstadt,
Germany.

ODERSKY, M. AND ZENGER, M. 2005. Scalable component abstractions. In Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA). ACM Press, San Diego, California, USA.

OWENS, S. AND FLATT, M. 2006. From structures and functors to modules and units. In International
Conference on Functional Programming (ICFP). ACM Press, Portland, Oregon, USA.

PEYTON JONES, S. ET AL. 2003. Haskell 98 language and libraries: the revised report. Journal of Functional
Programming 13, 1, i–255.

RAMSEY, N., FISHER, K., AND GOVEREAU, P. 2005. An expressive language of signatures. In International
Conference on Functional Programming (ICFP). ACM Press, Tallinn, Estonia.

ROSSBERG, A. 2003. Generativity and dynamic opacity for abstract types. In Principles and Practice of
Declarative Programming (PPDP). ACM Press, Uppsala, Sweden.

ROSSBERG, A. 2006. The missing link – dynamic components for ML. In International Conference on Func-
tional Programming (ICFP). ACM Press, Portland, Oregon, USA.

ROSSBERG, A. AND DREYER, D. 2008. MixML (project website). http://www.mpi-sws.org/˜rossberg/mixml/.
ROSSBERG, A., RUSSO, C. V., AND DREYER, D. 2010. F-ing modules. In Types in Language Design and

Implementation (TLDI). ACM Press, Madrid, Spain.
RUSSO, C. V. 1998. Types for modules. Ph.D. thesis, University of Edinburgh.
RUSSO, C. V. 1999a. First-class structures for Standard ML. In International Conference on Functional

Programming (ICFP). ACM Press, Paris, France.
RUSSO, C. V. 1999b. Non-dependent types for Standard ML modules. In Principles and Practice of Declara-

tive Programming (PPDP). Springer-Verlag, Paris, France.
RUSSO, C. V. 2001. Recursive structures for Standard ML. In International Conference on Functional Pro-

gramming (ICFP). ACM Press, Florence, Italy.
STONE, C. A. AND HARPER, R. 2006. Extensional equivalence and singleton types. ACM Transactions on

Computational Logic 7, 4, 676–722.
WADLER, P. 1990. Linear types can change the world! In Programming Concepts and Methods, M. Broy and

C. Jones, Eds. North Holland, Sea of Galilee, Israel.
WADLER, P. AND BLOTT, S. 1989. How to make ad-hoc polymorphism less ad hoc. In Principles of Program-

ming Languages (POPL). ACM Press, Austin, Texas, USA.
WALKER, D. 2005. Substructural type systems. In Advanced Topics in Types and Programming Languages,

B. C. Pierce, Ed. MIT Press, Cambridge, Massachusetts, USA.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.


